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Abstract: In this paper we offer a formal, rigorous proof of the correctness of Awerbuch’s
algorithm for network synchronization. We specify both the algorithm and the correctness
condition using the I/O automaton model, which has previously been used to describe and
verify algorithms for concurrency control and resource allocation. We show that the model
is also a powerful tool for reasoning about distributed graph algorithms. Our proof of
correctness follows closely the intuitive arguments made by the designer of the algorithm
by exploiting the model’s natural support for such important design techniques as stepwise
refinement and modularity. In particular, since the algorithm uses simpler algorithms for
synchronization within and between ‘clusters’ of nodes, our proof can import as lemmas the
correctness of these simpler algorithms.
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A Modular Proof of Correctness
for a Network Synchronizer!

1 Overview

1.1 Verification methods and models

As computer science has matured as a discipline, its activity has broadened from writing
programs to include reasoning about those programs: proving their correctness and effi-
ciency, and proving bounds on the performance of any program that accomplishes the same
task. Recently distributed computing has begun to broaden in this way (albeit a decade or
two later than the part of computer science concerned with sequential, uniprocessor algo-
rithms). There are several reasons why particular care is necessary to prove the correctness ‘
of algorithms when the algorithms are distributed. First, human thought tends to operate _.
sequentially, that is, we usually focus our attention on one aspect of a problem at a time.
This leaves us vulnerable when examining distributed protocols, where activity is happening
concurrently in several places in a system, since we can easily fail to consider the subtle
interactions between different activities. For example, unexpected race conditions can lead
to unexpected (and wrong) behavior. Second, distributed protocols are required to cope
with a certain level of nondeterminism in the system, such as variable message delays, vari-
able processor speeds, or even processor failures, and humans find it hard to deal with the
exploding number of different possibilities.

For these reasons one is not surprised that there have been several cases where algorithms

were published (and implemented) that seemed reasonable, but were later found to be in-

1This paper forms part of the first author’s Ph.D. thesis *Topics in Distributed Algorithms®, Department
of Mathematics, Harvard University, August 1987, A preliminary version of the material of this paper hu;
appeared In the Proceedings of the 2nd International Workshop on Distributed Algorithms (July 1987). The 'B
work of the second author was supported in part by the Office of Naval Research under Contract NOOO14- nced
85-K-0168, by the Office of Army Research under contract DAAG29-84-K-0058, by the National Science catior
Foundation under Grants MCS-830685¢, DCR-83-02391, and CCR-8611442, and by the Defense Advanced
Research Projects Agency (DARPA) under Contract N00014-83-K-0125. The work of the third author was 1tion/
supported by an H.T.I. fellowship Avallability Codes

on For




correct. A famous example is the ARPAnet routing algorithm. We believe that rigorously
proving the correctness of distributed algorithms is an important task, especially for alge-
rithms that are going o he used s building ‘blooks of ather protocols. For example, when a
distributed leader election pratocol is nesd to choose a primary copy for a replicated relation
in a distributed databasse, any unosrtaimty sbout the behavior of the leader election will
propagate to undermine confidence in the correctnese of the entire datahase menagement
system.

Despite the reasons presentad sbowe, mest wonk in distributed algorithms contains only
informal correctness argumentes and atill emits rigorous proofs of correctness for the al-
gorithms described. The claim is «ften heard that the formal techniques do not support
intuition and the prodis are too complex. ‘QObmiously, the complexity of the verification is
related to the conogpiual complenity «f the algorithm but it may also be heavily influenced
by the choice of the apecific venifiostion proceduse.

Good todls for distributed syetermns analysis ‘have been sought by many researchers Yar
a long time. Temporal lagic (eg. NP, [B0]) and Floyd-Hoare-style methods (eg. [OG])
are among the best known and indeed heve been wsed successfully to verify a number of
distributed algorithms. Wihile the proofs using these methods do indeed demonstrate cor-
rectness of the algorithms, they often do not help the meader to understand why the aligo-
K rithms are carvect. The seader com ‘be Jost in the details of the step by step proof and lose
: the intuition and the global pictuse.

Partially, the problema stems from tthe fact that the reader faces the full gap between the

; low level implementation and the high dewel gpecification of the problem. The designer of
the algorithm, however, when conceiving the algarithm or explaiving it, aften first argues in
X terms of high level activities that comprise the sclution, and considers interaction between
those. At subseguent design steps those activitios are ‘implemented’ by refining them in turn.
Only at the fizal step are activities of sach node in the system fully specified. The method
: allows each refinement to semain manegeshly simple. To keep the designer’s intuition,
: ideally, the verification procedure should follow closely the design process. That is, the
g proof should follow the refinements. The verification procedure then would be structured so
that the proof of each refinement could be simple enough and the processes of deaign and
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verification would be brought together. To support the stepwise refinement described above,

the verification method has to be hierarchical.

Another vital feature of verification procedures is exposed when the designer of the
algorithm wishes to change an implementation of some activity, for example for optimization
reasons. This obviously results in a new algorithm. Often though, the redesign of one activity
does not affect others. In such cases, the verification method shauld he ahle tn guarahtee
that only the changed part needs to be proved correct anew. That is, the verification
method should be modular or compositional. Compositionality in proofs would also naturally
support the fundamental ‘off the shelf building block’ technique in algorithm design as it
allows the use of the correctness proof of the ‘building block’ in the proof of the algorithm
without the need to reexamine it. But we must be particularly careful when considering the
intuitive notion of modularity as referred to by algorithm designers. It is too often discussed
informally in terms of several pieces needed to solve ‘subproblems’ although the sense of '4
‘subproblem’ is not precise. It is not obvious that the pieces fit together in any precise sense,
especially when concurrency is considered. And as the algorithms that one tries to build
become more and more complex, the lack of formal notion of modularity becomes more and
more of & problem.

The commonly known verification methods do not seem to support both hierarchical and
modular reasoning in natural ways. Thus the invariant assertion method allows hierarchical
stepwise reasoning, but offers poor support for modularity when distributed systems are
concerned. The proofs in temporal logic on the other hand, are composable but leave a large
gap between the implementation and the specification.

In this paper we will prove the correctness of a network algorithm using the I/O automa-
ton model. The model was introduced by Lynch, Merritt and Tuttle in [LM] and [LT|, and
it naturally supports both hierarchical and modular reasoning. From our experience with
this model, we feel that it enables one to provide rigorous proofs of correctness that follow
closely the informal arguments used by the designers of distributed algorithms to explain
their work. We describe specifications, intermediate refinements and algorithm as I/0O au-

tomata, and then show that one ‘implements’ another. Also, the model includes a natural

notion of composition of two automata, that correaponds to the combined use of two algo-




rithms, and its fortral semanties ate compuesitional, in that the behavioer of the compuesition

can be deducsd’ from' the beliwvior of il thie component sutomate.

An example of hisrerciienal ressoning in: the model can be found in [LT) where it was used
to verify correctuess of a distributed resource arbiter. The modularity property of the model
was exploited in [W] to  dedues correstuess: of an n-processor mutual exclusion algorithm,
from the correttitess of an: arbitrary 2-process mutual excluninn algorithm, which is uvsed as
a subroutine within the' muin algorithm. The model has also been successfully applied: to
describe and verify a number of algovithimsfor concurrenty contrul, recovery and replication
management in nested transaction systems, for example [LM],[FLMW)|,[GL],[HLMW). Ih
these, the model’s foutures are usud to capture formally some intuitions of system dusigners,
such as ‘the corvuetivesw of replication: managument caly needs to proved in a serial system,
as the correctvess of convurrancy evuttrul for the replicas will then ensure thet the replication
algorithm is corness in & comcurTent systeny’.

In this paper we demonstrate the case with which the maodel allows one to prove the

correctnewm of & network algorithr thet uses s superposition of two different algorithms

operating concurrently 4o scsomplish slusoet indupendunt subgoals, using claims that express
formally the correctaus of the subulgorithow.

1.2 Owur proof

The algorithm whowe correctasss we prove in this paper is a distributed protocol for network
synchronization. In designing algorithrmns to solve problems in s distributed computing en-
vironment, it is irnpertant to understand the sssumptions being made about the processors
and the network eoneeting them. I fewer assumptions are made, it is more likely that they
will be satisfled by the hardware available, but it is harder to find slgorithms that work
correctly wheniever the assumnptions are satisfied. For example, most networks do not offer
reliable bounds on the time a message takes to arrive, so it is important to find algorithms
that work correetly in ant asgnchroness system, but it is very much easier to design algo-
rithms if the network is spneAronoss. Awerbuch ([Aw]) proposed the use of a syncArenizer
that would enable one to convert any synchronous graph algorithm into an algorithm that
pctfm cotrectly in ot asynchronous (but failure-free) network. Using a synchroniser in
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this way has proved a successful methodology for solving asynchronous problems in efficient
ways ([Aw2)).

In [Aw], a synchronizer (called v in that paper) is constructed for a network whose e
topology is any fixed connected graph provided with a spanning forest subgraph, and a ]
distributed technique is given for finding a spanning forest subgraph for which the resulting o
algorithm has low time and message complexity. The synchronization algorithm given is, i
however, asserted to be correct for any spanning forest subgraph. The algorithm is derived "y
as a superposition of a simple synchronizer (called 8) executing within each ‘cluster’ (a
connected component of the spanning forest subgraph), and another simple synchronizer
(called a) that synchronizes between the clusters. This description helps to explain the t*;}
detailed algorithm, but no formal proof of correctness is offered in [Aw]. We provide a B

formal account of an algorithm closely based on Awerbuch’s, and rigorously prove results
about its correctness. The proof of correctness is modular and hierarchical. It closely follows . (-

the outline of the informal arguments of [Aw], by building on claims that express formally

the correctness of algorithms a and 8. Since these results have also not been formally proved =
before, we include such proofs for the sake of completeness. i:%i
Our account of the synchronizer is given as follows. First we provide a top level speci- ;:z:
fication for any network synchronizer by giving a single I/O automaton S that uses global “
information about the system. Then we present the « algorithm itself, as a system Dist- :.2::
SysS of I/O automata, including one for each node of the graph with access only to local 'E;‘:E,
information and communicating only along the edges of the graph. As this algorithm is j‘:E’,
a superposition of two algorithms a and B, following Awerbuch’s informal reasoning we i
divide each node-automaton into two automata, one containing the state and operations ':g:":
contributing to intercluster synchronization and the other containing the state and opera- ‘:;!:::
tions contributing to the intracluster synchronization. The two components do not interact W
at all, except when the node is the root (‘leader’) of its cluster. :Z:::
In the language of our model, to verify the correctness of the algorithm we need to prove :l::;
that the system DistSysS of I/O automata implements the specification automaton S. We ::§::

proceed in the proof by refining the global specification according to Awerbuch’s intuitive

construction and defining for each refinement the corresponding correctness claim that needs ey




to be proved, until the level of node algorithms is reached. We start with the global specifi-
cation S (see Fig. 1) and refine it following the construction in [Aw| by a system SysS that
consists of one awtomaton SL for each cluster, specifying the intracluster synchronization
behavior, and slso a single coordinator automaton CS that specifies intercluster synchro-
nization (see Pig. 2). The correctaess claim for this refinement is that all executions of the
composed system SysS are scceptable bebaviors of the global specification S.

In the above refinement, automaton SL provides a specification for the intracluster syn-
chronisation. According to [Aw] the intracluster synchronization is implemented by algo-
rithm 8. Thus, we further refine the intermediate specification SL by the distributed spec-
ification SysSL (see Fig. 3), that models the synchronizer 8 (a simple synchronizer using
communication over a tree). The specification includes a separate node automata NDSL for
each node in a ¢luster and a special automaton LESL for the leader, as well as an automaton
LISL to represenit each link. The correctness claim for this refinement is in fact established
by the correctness proof for the algorithm 8. If it were already carried out in our model, we
could use it here as is.

Next, we consider the specification for the global intercluster synchronization coordinator
CS. In [Aw] it is implemented by a distributed algorithm «, in which each cluster is a
participant. Thus we refine the global coordinator specification CS with a distributed one
SysCS (see Fig. 4), where clusters are modeled by automata CLCS that interact according to
algorithm & (a simple synchroniser, using all the edges of the graph). Thus, the correctness
claim of this refinetment is established by the correctness proof of algorithm a. Here again
the proof could be imported if it were available in the model.

Finally we consider the behavior of a cluster participating in a, which is specified by
automaton CLCS. Following [Aw] we refine it by a distributed specification SysCLCS that
specifies for each node in a cluster its behavior contributing to the cluster’s part in algorithm
a. This is done by giving & node automaton NDCS for each non-leader node in a cluster and
a leader automaton LECS for the leader node, as well as automata LICS for the links (see
Fig. 5). The cotrectness claim for this refinement then requires a proof that the the composed
system SywCLCS implements the cluster specification CLCS. This is the last claim for the
correctness proof of the aetwork synchronizer. It is due to the support for modulerity and
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Figure 1: S§(G) : :
hierarchical reasoning provided by the model of [LT], that the results described are sufficient - :
to establish that the detailed node level specification DistSysS correctly implements the high ;
level specification S. \

The above discussion has dealt with the safety properties of the algorithm. We also give vt
proofs of the liveness and complexity analysis of the algorithm, by reasoning directly about Et
executions of the detailed system. i

This paper shows how the properties of the /O automaton model enable us to capture E
formally some of the important intuitions used in designing algorithms. We believe that with E
this model, it will not be difficult to prove the correctness of other algorithms whose design )
was guided by these principles of stepwise refinement and modularity. We also hope that ;
the insights into the precise nature of modularity that are gained from this formalization ';'
will be useful to the algorithm designers themselves. ;‘,
2 I/O Automata i‘

\
)

The following is a brief introduction to a model that is proving useful for describing and

-

reasoning about distributed systems. The model is developed at length, with extensions to

-

express fairness properties, in [LT|, where proofs can be found of many of the claims made
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here.

All components i our systems will be modeled by /O automets. An I/0O automaton
A has a set of states, some of which are designated as snitial states. It has operatioms,
each classified m» sithver an imput operation or an ostput operation, or an internal operation.
Finally, it has a transition relation, which is a set of triples of the form (s’,x,s), where s’
and s are states, and x s an operation. This triple means that in state «’, the antomaton
can atomically do operation x and change to state s. An element of the transition relation
is called a step of the autommton. The cutput operstions are intended to model the actioms
that are triggered by the automston itself, while the mput operations model the actions that
are triggered by the environment of the automaton. Internal operations are used to model
communication within the automaton (when we form an automaton from components, this
will include communication between pieces of the automaton). We will always give the
transition relation of an sutomaton by giving pre- and postconditions for each operation .
We give the preconditions as predicates depending on 8’, and the postconditions as predicates
depending powsibly on both s’ and s. These are to be understood as saying that (s’,x,s) is
in the transition relastionship exactly when the preconditions are true of state s’ and the
postconditions are true of »’ and ».

Given a state s’ and an operstion ¥, we say that x is enabled in s’ if there is a state s for
which (s’,x,s) is a step. We require the following condition.
Input Condition: Each input operstion x is enabled in each state s’.
This condition says that an 1/O automaton must be prepared to receive any input operation
at any time. This is reflected in the fact that input operations have empty preconditions.

An ezecution of A is a (finite or infinite) alternating sequence $0s%1» 51,%2,-» %080,
of states and operations of A, beginning with a state, and (if finite) ending with a state.
Furthermore, sg is a start state of 4, and each triple (s’,x,s) that occurs as a consecutive
subsequence is a step of A. From any execution, we can extract the schedule, which is the
subsequence of the execution consisting of operations only. Because transitions to different
states may have the same operation, different executions may have the same schedule. We
say that a schedule a of A can leave A in state s if there is some execution of A with schedule

a and final state s. We say that an operation x is enabled after a schedule a of A if there

12
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exists a state s such that o can leave A in state s and « is enabled in s.

Given a schedule a of automaton A, we define the corresponding ezternal schedule ext(a)
to be the subsequence of a consisting of those events that are occurrences of output oper-
ations or input operations (that is, we form ext(a) by removing from a the internal opera- d
tions). We define the behavior of 4, beh(4), to be the set of all sequences that are external
schedules of 4. Formally, beh(A) = {ext(a) : « is & achedule of 4}. If 4 and 8 are 1/O
automata, we say that B implements 4 if 4 and 8 have the same output and input opera-
tions, and beh(8) c beh(A). The intuitive meaning of this is that 3 can be safely used for
any task for which 4 is satﬁfutory. It is clear that implementation is transitive, that is, if
B implements A and C implements B then C implements . When B implements A and 4
implements B, then we say that 4 and B are equsvalent. ]

We describe systems as consisting of interacting components, each of which is an I/O
automaton. It is convenient and natural to view a system itself as an I/O automaton. Thus, ‘
we define a composition operation for I/O automata, to yield a new I/O automaton. A set '
of I/O automata may be composed if, for each component A the set of internal operations of
4 is disjoint from the set of all operations of the other components, and in addition, the sets
of output operations of the various automata are pairwise disjoint. A state of the composed

automaton is a tuple of states, one for each component, and the start states are tuples

ST . e

consisting of start states of the components. The operations of the composed automaton

are those of the component automata. Thus, each operation of the composed automaton is

an operation of a subset of the set of component automata. An operation is an output of
the composed automaton exactly if it is an output of some component. An operation of the
composed automaton is an internal operation exactly if it is an internal operation of some

component. An operation of the composed automaton is an input operation exactly if it is

LIS MO RN A

not an output or internal operation of any component. (The output operations of a system

~

are intended to be exactly those that are triggered by components of the system, while

e w
-

-

the input operations of a system are those that are triggered by the system’s environment.) )

\J
- During an operation x of a composed automaton, each of the components that has operation "
x carries out the operation, while the remainder stay in the same state.

An ezecution or schedule of a system is defined to be an execution or schedule of the ',
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automaton compased of the individual automata of the system. If a is a schedule of a
system with component 4, then we denete by ai 4 the subsequence of a containing all the
operations of 4. Clearly, a4 is s schedule of 4. The following lemma expresses formally
the iden that an operation iv-under the control of the component. of which it is an output.

Lemma 1 Let of be o schedule of ¢ sgstem S, and let a = a'x, where x is an output
operation of compowent A. If al & is & schedule of A, then & is a schedule of S.

We now give the lemymu that states that implementation is a compositional property.
This is a major resson why modeling algerithms by [/O automata permits modular proofs
of correctnemss.

Lemma 3 Suppose the eutomaton A o the result of composing A;, and B is the result of
composivig B.. If B; implaments £; for eack indez 1, then B implements A.

When we conidider s systems composed of several components, we are often not interested
in the internal working of the system, and so we wish to ignore the operations that model
communication between the components. We therefore introducs the Asding transformation.
If A is an swtometon exd v an cwtput operstion of A, then the result of hiding x in £ is
the automaton with the same states, operations and transition relation as 4, but with »
classified a» an internal operation instend of an output operation. Note that the schedules of
the automaton after biding are exactly the same as the schedules of the original automaton,
but the behevior, which is immvoived in proving implementation, has changed. Clearly if x is
an operation of exactly onre component of a system, the result of hiding x in that component
and then composing the automata, is the same as composing the automata and then hiding
x in the composition. We elso introduce the transformation that renames an operation of an
automston. 30 long us the renamiag is done consistently throughout a system of automata,
and the new neme is not already used for any operation of any component, then the result
of renaming af operation and thea composing is the same as the result of composing and
then renaming. Finally we observe that renaming an internal operation of an automaton, as

long as the new name is not already used for an operation of the automaton, does not alter

the behavior of the automaton.
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2.1 Distributed Solutions

We will use I/O automata to model both a global specification of the synchronizer, and
the local components of the distributed solution that we will give. Since the fundamental
composition mechanism described above is the simultaneous occurrence at several automata
of an operation, we have to be careful when modeling asynchronous communication. For
example, we would not represent message passing as a single operation shared by sender and

receiver. Instead we give explicit automata to represent the communication links, just as we

o W Y

give an explicit automaton to represent each node. Sending a message is an operation that g
occurs simultaneously at the sender and the link. Similarly, receipt of a message is a shared

operation between the link and the recipient. We use nondeterminism within the automaton

e

for the link to capture the asynchrony of the communication network. Thus, we model an
‘ asynchronous unidirectional link from p to q, conveying messages from the set M, by the
E following automaton. 2
‘ Link Automaton: LIy (p,q) ;
Inputs: %-‘
. send(p,q)M for M € M
Outputs: 3
rec(p,q)M for M € M X
0
state: 'i
) multiset contents, initially empty y
. ¥
| oy :
transitions: :,
send(p,q)M i
Postconditions ‘:
! s.contents = s’.contents U M :
:] t
rec(p,q)M ‘
Preconditions
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M € s8’.contents
Postconditions
s.contents = s’.contents — M

Suppose we are given a distributed problem. This will be specified by an automaton
whose schedules are acceptable behaviors for a solution, together with a graph G describing
the topology of the network on which a solution has to run, and an assignment locale, thdt
gives for each operation of the specification automaton the node of the network at which it
occurs. We now define what it means to say that a system of automata provides & distributed
solution to this problem. This means that the automaton that results from composing

v the members of the system and then hiding all operations that are not operations of the
r: specification, is an implementation of the specification in the sense of the previous section, -
z and in addition, the system satisfies the following conditions:

1. The system consists of an sutomaton NODE(p) for ench node p of the graph, Sogether
i with, for each edge () of the graph G, twe link swtomata Li(p,q) and Li(q,p) =
2 given above for a suitable choios of message set.

N 2. For eack operation x of the system, either there is a node p such that r is an operavion

s of the node automaton NODE(p) (and no other component), or there are nodes p and
P q %0 that x is an input of NODE{p) and an output of L1{q,p) (and an operation of no
3 other component), or there are nodes p and q 30 that « is an output of NODE(p) and
j:“ an input of LI(p,q) (and an operation of no other component).

'; 3. Each operation x of the specification automaton is an operation of NODE(p), where

p=locale(r) is the node to which the operation is assigned, and of no other component.

3 The Algorithm

The algorithm will run on a network whose topology is given as a connected graph G,
described by giving for each node p a set of nodes neighbors(p). The nodes are partitioned
into clusters, so that each cluster is connected. Each cluster’s subgraph has a distinguished

16
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rooted spanning tree. This data is given as follows: for each cluster C there is a node
leader(C), and for each node p € C there is another node parent(p), which is the next node
on the path to leader(C). If p = leader(C) then parent(p) = nil. We let children(p) denote
the set of nodes q such that parent(q) = p. We say that cluster D is a neighbor of cluster
C, written D € Neighbors(C), if there are nodes p and q with p € C, q € D, and q €
neighbors(p). For each pair of neighboring clusters, a single distinguished ‘preferred’ adge
is chosen between them. This is indicated by giving for each node p a set preferred(p) of
nodes that are neighbors of p along preferred edges. We say that a node is special if any of
its descendants in the tree (that is, itself, or its children, or its children’s children, etc.) have
neighbors along preferred edges. We let specialchildren(p) denote the subset of children(p)
containing special nodes. Thus when there are at least two clusters, the special nodes form
the least subtree of a cluster’s tree that has the same root and contains all the endpoints of

preferred edges.

3.1 The Use of the Synchronizer

We briefly discuss the architecture of the context in which the synchronizer is placed, and
show how I/O automata can be used to model all the pieces of such a system. At each node
of the asynchronous network is a proccess that executes the code for a graph algorithm in
a synchronous system. We model the process at node p by an I/O automaton CLIENT(p),
whose operations are synch-receive(p,i)¥ and synch-send(p,i)N, where N is a collection
of messages tagged with source or destination information. Round i of the synchronous
algorithm at node p is begun when the automaton CLIENT(p) receives an input operation
synch-receive(p,i) N, where the messages in the set N are those that were included with
destination p in the sets of messages in preceding synch-send(q,i-1) operations. When the
node has finished local processing of these messages, it performs an output operation synch-
send(p,i) N' for a new set of messages and destinations. Different synchronous algorithms
will be described by different 1/O automata, and we do not constrain the choice except
by simple syntactic conditions, such as requiring each p not to perform a synch-send(p,i)
operation unless a synch-receive(p,i) operation had occurred earlier, and not to perform a

synch-send(p,i) operation if a synch-send(p,i) operation had already occurred.
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At each notle of the network thereis'ulso’a process that tsesthe asynchronous communi-
cation system:to transmit it veessuges of tive clierit ‘alyoritim, wid diso 'to'wimd ‘and eceive
acknowledgementsfor such. messages. Thisprocess has the'vrésponsibility-of wotifying the syn-
chronizer when all the round i messxges of thie cliert algorithm frave boen ackenowledged, -and
it must also delay delivering tive.collested cliont algoritlim round i'messages uritil:the’synchro-
nizer has given permission for :thve start of round i+1 wt thet vnle. We model thie process at
node p by an 1/0 autematon FRONT-EXND(p). The aperationsdf CLIENT(p) include'synch-
send(p,i) N and synch-receive(pi) N, which are vivared with CUEENT(p). FRONT-END(p)
also has operstions send(p q)Ni(i), vec(qp)M’(i), send(p NOK-M'(i), wnd rec(q;p)ACK-
M(i), where M and W’ mre round i meseages of the chivnt wlyevithn. These opsrations are
shared with link sucsrmate betwowm p und q. Finally the itwradtion with the wyhchironizer is
modelled by input operstions GO(p.i), which indicabe thut all revnd i-1 messages being sent

to p have already arrived (snd vhwt thwrofore thuy cun be bundied #ito a vet and delivered

to the client algovithm st any time once the client hws Bnisbed round i-1), and By Sutput
operations OK(p,i), which indicute to the synchroniser thut acinowlodgernvt®ts have deen
received at p for all round i messages of the cliont algorith Vhet were stirt from p.

We give here the explicit construction of the 1/0 swtomtton FRONTVEND(p). We
use the notations described earlier, amd also we will ssseme, for this and for all otiver 1/0
automata that we give, that the postoonditions of each operation include implicitly the clause
s.v = ¢’.v for each component v of the state 3 whenever that component 4.v is ot mentioned
in the explicitly given postcoanditions.

Front-end: FRONT-END(p)
Inputs:
synch-send(p,i) ¥, for N a multiset of (message,node) pairs, i positive
rec(q,p)M(i), for q & node, M & message, i positive
rec(q,p) ACK-M(i), for q a node, M a message, i positive
GO(p,i), for i positive
Outputs:
synch-receive(p,i) ¥, for N a multiset of (message,node) pairs, i positive
send(p,q)M(i), for q a node, M a message, i positive
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send(q,p) ACK-M(i), for q a node, M a message, i positive

OK(p,i), for i positive

State:

array GOrecli], initially all false
array OKsent[i}, initialiy all false
array synchsend(i, initially all false
array synchreceive(i], initially all false
multiset mess, initially empty
multiset ack, initially empty

multiset unacked, initially empty

array of multisets mess-received(i], initially all empty

transitions:

synch-send(p,i) ¥

Postconditions
s.synchsend[i] = true

s.mess = s’.mess U {(p,q)M(i) : (M,q) € N}

rec(q,p)M(i)
Postconditions
s.ack = 8’.ack U {(p,q)ACK-M(i)}

s.mess-received(i] = s’.mess-received|i] U {(M,q)}
rec(q,p) ACK-M(i)

Postconditions

s.unacked = s’.unacked - {(p,q)M(i)}

GO(p,i)

8.GOrecli] = true

19

v

X N O S O OO OO0 DB OO O DN S DR DA LA D DA O T DD O A ONGNGS I



IS T R PO RO by R WU T T NS NY R RV NN NN W AR A R KRR R L RN

synch-receive(p,i) ¥

Preconditions

8’.GOrec[i] = true

i = 1 or #’ syncheend[i-}] = true
s’y nchreceiveli] = fulue

send(p,q)M(i)
Precoaditions

(P,q)M(i) € o’ 2nene
Postconditions

s.mess = o’ e — {(pQ)M())
s.unacked = o’ .unadcked U {(p.a)M()}

send(p,q)ACK-M()
Preconditions

(P.a)M() € o'.ack
Postconditions

s.ack = o".ack - {{(pa)MG))

OK(p,i}

Preconditiens
o’ synchesnd(i}l = true R
o’ .unached U o".cuees comtzins no elumvent (,q)04(i) fox awy q or B el
8’.OKsent(i] = falve

Postconditions ::E:E
5.0%sent(ifi = trus ::EE
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In the next section we will give a specification synchronizer automaton S(G), which uses :"
global information about the OK(q,i) operations at all nodes to determine when to perform ‘»" ?
GO(p,i+1). In particular, S(G) does not perform GO(p,i+1) until OK(q,i) has occurred :;:‘
for all q € neighbors(p). In Fig. 6 we illustrate all these automata. When S(G) performs :E;t
GO(p,i+1), every neighbor of p has received an acknowledgement for every round i message :':
sent. In particular, acknowledgements have been received for every round i message sent .fi
to p, and therefore every such message must have arrived at p. Thus FRONT-END(p) will ‘;:;
correctly deliver to CLIENT(p) all the round i messages in the synch-receive(p,i+1) opera- ‘j:
tion. It is straightforward to use the techniques of [LM] to turn this argument into a formal liii
proof that the system illustrated behaves (as far as each CLIENT automaton can tell) just ‘
like a synchronous system, that is, one in which the clients share their operations with a - :.f:.
single communication system automaton, that accepts collections of messages in synch-send E‘:;
input operations from all nodes, sorts out the destinations appropriately, and bundles the  "
messages and delivers them in synch-receive output operations after all client nodes have 'i;‘;;
finished the previous round. In this paper, we concentrate on the problem of showing that ::::
a complicated but distributed synchronizer implements the simple but centralized specifica- :E::‘
tion synchronizer, where we illustrate the I/O automata model’s support for compositional ".:
modularity. :.':'
Q!

3.2 Specification ::",
We give a single specification automaton S{G), called a synchronizer for the graph G. This \
has an input operation OK(p,i), which is an indication from the front-end at node p that :._
every message it sent in round i has arrived at its destination. When every neighbor q of a '1‘
node p has issued its OK(q,i-1) operation, the synchronizer can issu: an output operation o
GO(p,i), which indicates to the front-end at node p that it can commence round i of the o
synchronous algorithm as soon as the client has finished its local processing for round i-1, !
since there can be no more round i-1 messages in transit to p. !"‘
Synchronizer: S(G) :::

q::'

o
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Figure 6: The whale system
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Inputs:

OK(p,i) for p € G, i positive
Outputs:

GO(p,i) for p € G, i positive

State:
array OKrec|p,i], initially all false
array GOsent[p,i}, initially all false

transitions:
OK(p,i)
Postconditions

8.0Krec[p,i] = true

GO(p,i)

Preconditions
i = 1 or (s’.OKrec|q,i-1] = true for all q € neighbors(p))
i = 1 or 8’.GOsent[p,i-1] = true
8’.GOsent/[p,i] = false

Postconditions

8.GOsent/|p,i] = true

3.3 The Detailed Distributed Algorithm

We now give the distributed solution that is closely based on Awerbuch’s algorithm 1+,
translated into the I/O automaton model. We give an automaton ND(p) for each node p of
the graph that is not a leader of a cluster, and an automaton LE(C) for the leader of each
cluster C. We also give link automata for each edge of the graph G. The detailed code is
given in Appendix I, together with an account of the relationship between it and the code
in [Aw].
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To help the reader understand the algorithm, we give an informal account, paraphrasing
[Aw)], of the low level working of the syatem. Once a node p that is a leaf of its cluster’s
tree has received the OK(p,i) input operation (indicating that the node is safe, that is, every
message that node sent in the i-th round has been received) p sends a SAFE(p,i) message
to its parent in the tree. Any node p that is not a leaf nor the leader sends a SAFE(p,i)
message to its perent only after it has both rcccived the OK{p,i) input and also received
SAFE(q,i) messages from all its children. Thus SAFE(p,i) is not sent until every node in the
tree that is a descendant of p is safe. This pattern of communication, with a node passing a
message to its parent only after receiving it from all its children, is a common paradigm in
distributed graph algorithms, and is called convergecast. When the leader of cluster C has
received SAFE(q,i) messages from all its children q, and also is known to be safe itself (that
is, has received OK(p,i)), it issues the CLUSTEROK(C,i) operation. 7

Once CLUSTEROK(C,i) has occurred, intercluster synchronization begins. The leader
sends each of its special children a CLUSTERSAFE(p,i)) message. In addition it sends
CLUSTERSAFE(p,i) messages over any preferred edges that originate at the leader. Each
node p in the tree, after receiving 8 CLUSTERSAFE(q,i) message from its parent q, sends
CLUSTERSAFE(p,i) to its special children, and also along any preferred edges. Thus the
CLUSTERSAFE messages are broadcast over the subtree of special nodes (this is another
standard communication pattern), and are also sent to neighboring trees. The cluster C uses
a convergecast of READY/(p,i) messages (over the subtree containing only special children) to
detect the fact that CLUSTERSAFE(q,i) messages have been received from all neighboring
trees along preferred edges. When the leader of the cluster has received READY/(q,i) from
each of its children, and also has received CLUSTERSAFE(q’,i) along any preferred edges
that go directly from the leader to neighboring trees, it issues the CLUSTERGO(C,i+1)
operation, which indicates the completion of intercluster synchronization for cluster C.

Once the CLUSTERGO(C,i+1) operation has occurred, and also the whole cluster is
known to be safe (because the leader has received SAFE(q,i) messages from all its children,
and also it has received OK(p,i) itself) the leader p can issue GO(p,i+1) (informing node p
that the next round can begin) and it can also send PULSE(p,i+1) messages to each of its

children. The PULSE(p,i+1) messages are broadcast over the tree, and when they arrive at
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each node, that node is able to issue the GO(p,i+1) operation.
f We claim that the collection of automata, consisting of all the automata LE(C) for all C,
f ND(p) for all non-leader nodes p, and LI(p,q) for all p and q such that (p,q) is an edge of G,
is a distributed solution to the problem specified by the automaton S{(G), the graph G, and
.;é the requirement that the operations GO(p,i) and OK(p,i) be assigned to node p. Since it is
’ clear that the system is preperly distributed, all that remaias is to show that the automaton
DistSysS(G), the result of composing the automata and then hiding all operations except

GO(p,i) and OK(p,i), implements S(G). This will be done in Theorem 10.

4 The Verification

We now begin the process of verifying that the algorithm given implements the specifica-

R

tion. First we divide the code at each node into two pieces, containing the operations and

P
Pl N

state relevant to inter- and intracluster synchronization, respectively. Then we give the

specification SL for an intracluster synchronizer, and remark that the actual code gives an

Py implementation of this using algorithm S. Similarly we note that the collection of automata
’a doing intercluster synchronization in one cluster implements the representative CLCS. In
: turn, CLCS acts as the whole cluster should, as a piece contributing to intercluster synchro-

nization using algorithm a. Then we give the specification of the coordinator CS, which

-

represents intercluster synchronization, and note that algorithm « is a correct implemen-

iy T e

tation of this. We prove formally that the combination of CS with the automata SL(C)

implements the specification S, that is, that synchronization can be achieved by combining

>
-

intra- and intercluster synchronization. Finally we combine all these results to see that the

distributed algorithm + as described by the detailed code implements the global specification
S.

-,

2

Although the subsidiary claims are given here in a particular bottom-up order, we note

that these results are independent, and could be carried out separately and in any order, or

R W g

even imported from other work (if available).
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4.1 The Division between Inter- and Intracluster Algorithms :

Following Awerbuch’s informal correctnsss. arguments, we will regard the activity of the v
system as consisting- of both inter- and intracluster synchronisation. The messages CLUS-

TERSAFE(p,i) and READY(p,i) are used for intercluster synchronization, while the mes- ’
¢

sages SAFE(p,i) and PULSE(p,i), as well as the operations OK(p,i) and GO(p,i) are part ¢
of intracluster synchronization. ‘I'he operation CLUSTEROK(C,i) serves to communicate ;
from the intracluster synchronizer to the intercluster synchroniser, while CLUSTERGO(C,i)
communicates the other way. Thus we give two sets of automata: NDCS(p), LECS(C) and
LICS(p,q) to represent the intercluster synchronization, NDSL(p), LESL(C) and LISL(p,q)

to represent the intracluster synchronisation. The detailed code-can be found in Appendix "
II, as it is extremely similar to the code of the full algorithm. Eassentially we divide the opera- “
; tions, state variables and transition relationships of ND(p) between NDCS(p) and NDSL(p) :i
so that each gets the operations, state variables and transitions relevant to its own part of - 3
the synchronisation. Similarly. we divide LE{C) into LECS(C) and LBESL(C), and L(p,q) .?
| into LICS(p,q) and LISL(p,q) é‘:
It is clear that the compasition of the automata NDCS(p) and NDSL(p) is equivalent to. :3:

the automaton ND(p). The only difference, in fact, is that the composition has two multisets i
for outgoing messages, while ND(p): has only one multiset buffer. Similarly the compositicn N
of LECS(C) and LESL(C) is equivalent to LE(C), and the composition of LICS(p,q) and i::
LISL(p.q) is equivalent to LI(p,q). Therefore DistSysS(G) is equivalent to DistSysS(G)’, the - :::
result of composing all the automata mentioned in this subsection, and then hiding all the ,‘

operations except GO(p,i) and OK(p,i). Our task will thus be to prove that DistSysS(G)’ :

implements S(G). 'il‘;
W

4.2 An Intracluster Synchronizer W
by

The collection of automata that perform intracluster synchronisation for a cluster C use ::t.:‘
algorithm B. The combined activity of these automata is to synchronise the cluster, and :3;
in addition to inform the intercluster synchronizer (via CLUSTEROK(C,i)) when the whole v,
cluster is safe, and to delay the GO(p,i) at any node until all neighboring clusters are known ::i
to be safe. (The intercluster synchronizer reports this by CLUSTERGO(C,i).) Thus the ::::
W
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behavior of the cluster as a whole can be specified by the following automaton:
Modified Synchronizer for cluster C: SL(C)
{This is a slightly modified synchronizer specified, with extra operations that interact with

the intercluster synchronizer.}

Inputs:

OK({(p,i) for p € C, i positive
CLUSTERGO(C,i) for i positive
Outputs:

GO(p,i) for p € C, i positive
CLUSTEROK(C,i) for i positive

State:

array OKrec|p,i], initially all false

array GOsent[p,i, initially all false

array CLUSTEROKSentl|i], initially all false
array CLUSTERGOrec(i, initially all false

transitions:
OK(p,i)
Postconditions

8.0Krec[p,i] = true

CLUSTERGO(C,i)
Postconditions

8.CLUSTERGOrec|i] = true

GO(p,i)
Preconditions

i = 1 or (s’.OKrec|q,i-1] = true for all q € Neighbors(p) N C)

i = 1 or 8’.GOsent(p,i-1] = true




aaaaaaaa

s’.CLUSTERGOrec(i] = true
8’.GOsent[p,i] = false
Postconditions

5.GOsent[p,i] = true

CLUSTEROK(C,i}
Preconditions
8’.OKrec[p,i] = true for ali p € C
s’ CLUSTEROKsent[i] = falwe
Postconditions

s.CLUSTEROKseat[i] = trve

In order to express formally the fact that the algorithm A i correct, we let SysSL(C)
denote the result of composing the automata LESL(C), NDSL(p) for all p € C except
leader(C), and LISL(p,q) for all p and q 80 that (p.q) is an edge of G and both p and q are
nodes of C, and thea hidiag all the operations that are not operations of SL(C). Then we
have the following lemma, whose proof is found in section §.1.

Lemma 3 SyaSL(C) implements SL(C).

4.3 A Cluster Representative for Intercluster Synchronization

In giving his informal account of this algorithm, Awerbuch refers to the intercluster syn-
chronization being performed by using algorithm a betweea the clusiers. Thus, we give, for
each cluster C, an automaton that specifies the activity of the whole cluster as a participant
in intercluster synchronisation, using algorithm a. Thus the cluster sends messages to its
neighbors once it has heard (from CLUSTEROK(C,i)) that the cluster is safe, it receives
messages from its neighbors indicating that they are safe, and performs CLUSTERGO(C,i)
once all the neighboring clusters are knowa to be safe.
Cluster representative: CLCS(C)

Inputs:
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CLUSTEROK(C,i) for i a number ¢
rec(D,C)CLUSTERSAFE(Dj) for D € Neighbors(C), i positive v
Outputs: ;
CLUSTERGO(G,j) for i positive bt
%
send(C,D)CLUSTERSAFE(C,i) for D € Neighbors(C), i positive b
N
W
N
state: 1
array CLUSTERGOsent|i], initially all false '
array CLUSTERSAFErec|D,i), initially all false ;:‘,
t
multiset mess, initially empty e
[ ]
)
transitions: . :::
L)
CLUSTEROK/(C,i) . 0
LN
Postconditions ;
s.mess = 8’.mess U {(C,D)CLUSTERSAFE(C,i) : D € Neighbors(C)} o
U
7
rec(D,C)CLUSTERSAFE(D,j) i
4
Postconditions B
>
8.CLUSTERSAFErec(D,i] = true o
&
L]
CLUSTERGO(C,i) t"
Preconditions
i = 1 or (8".CLUSTERSAFErec([D,i-1] = true for all D € Neighbors(C)) ::':é
i = 1 or 8.CLUSTERGOsent{i] = true J
v ¥
s’ .CLUSTERGOsent[i] = false .
5v
Postconditions Ay
A
8.CLUSTERGOsent[i] = true
¢
send(C,D)CLUSTERSAFE(C,i) ",
'.l'c
Preconditions :::-‘,
t
]
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(C,D)CLUSTERSAFE(C i) € 8’.mess
Postconditions

s.mess = s’.meas — {(.C,D)OLUSTERSAFE(C,i)}

We denote by SysCLCS(C) the system formed by composing all the automata LECS(C),
NDCS(p) for p € C — leader(C), and LICS(p,q) for p and q in C such that (p,q) is an edge
of G, then renaming send(p,q)CLUSTERSAFE(p,i) as send(C,D)CLUSTERSAFE(C,i) and
rec(q,p) CLUSTERSAFE(q,i) as rec(D,C)CLUSTERSAFE(D,i) whan (p,q) is the preferred
edge between C and D, and finally hiding all operations that are not operations of CLCS(C).
Then we have the following claim, that the detailed algorithm in each cluster implements
the required behaviar. Its proof is found in section 5.2.

Lemma & SyoCLCS5(C) implements CLCS(C).

4.4 An Intercluster Byachronizser

If we consider all the antomata CLCS(C) for each cluster T, together with link antomata
LICS(C,D) {each of these is just LICS(p,q) for (p,q) the praferred edge between C and D
with operations renamed, with p replaced by C and q replaced by D), thea these together
perform algorithm a to synchrosise between the clusters. Thus we istroduce an sutomaton
that is just e specification symchronizser for the quotient graph formed by identifying all
the nodes in & cluster together, except that each state and operation neme is prefixed by
‘cluster’.

Intercluester Syachronizer: CS
Inputas:
CLUSTEROK(C,i) for C s cluster, i positive
Outputas:
CLUSTERGO(C,i) for C a cluster, i positive

State:

array CLUSTEROKTrec[C,i], initially all false
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array CLUSTERGOsent[C,i], initially all false ',

transitions: o
CLUSTEROK(C,i)
Postconditions :

s.CLUSTEROKTrec|C,ij = true

# CLUSTERGO(C,i) 3
1

Preconditions 1.4

i = 1 or (s'.CLUSTEROKTrec[D,i-1] = true for all D € Neighbors(C)) :'.'

i = 1 or (s, CLUSTERGOsent|C,i-1] =true) 3

¢’ .CLUSTERGOsent|[C,i| = false E'

‘ Postconditions :,
‘ s.CLUSTERGOsent|C,i] = true .
v

4

It

; We denote by SysCS the automaton formed by composing the automata CLCS(C) for ":
‘ all clusters C, and LICS(C,D) for all pairs of clusters C and D that are neighbors, and then o)
hiding all operations that are not operations of CS. The fact that algorithm « is correct is f'

expressed simply by the following lemma, whose proof is given in section 5.3. .:

Lemma 5 SysCS smplements CS. ]

4.5 High Level Structure ‘!.:

Consider an automaton SysS(G), which is formed by composing the intracluster synchro- ;:

nizers SL(C) for all clusters C, together with the intercluster synchronizer CS, and then N

hiding all the operations except GO(p,i) and OK(p,i). The fact that performing inter- and "

intracluster synchronization is a way to synchronize the whole graph, is expressed in the °

following simple statement: SysS(G) implements S(G). In order to‘prove this statement, we ¢

first give several results that relate the schedules of the automata involved to the states in X

f which the automata are left. First we discuss the specification automaton S(G).

31
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Lemma 6 Let a be a schedule of S{G), and let s be the state of S(G) after a. Then

1. s.0OKrec[p,i|=true if and only if a contains OK(p,3).

2. 5.GOsent[p,i|=true if and only if a contains GO(p,s).

t
]
‘e Proof: We give the proof of (1), as the proof of (2) is almost the same. We use induction t

on the length of a. If « is empty, thea it does not contain OK(p,i), and s is the initial stase,

"

for which s.OKrec|p,i]=false. Thus suppose a = a'x, and let s’ be the state of S(G) after

o. If » is OK(p,i), then a contains OK(p,i), and by the postcondition of the operation ';

OK(p,i), 8.0Krec|p,i] = true. Otherwise x is an operation whose postconditions do not .

\

mention OKrec[p,i], and so we have 8.OKrec[p,i] = true if and only if 8’.OKrec[p,i] = true, M

. which by the induction hypothesis occurs if and only if o' contains OK(p,i). But (since » is e'

. not OK(p,i)) we also have in this situation that o' contains OK(p,i) if and only if & contains ‘:.
'

! OK(p,i). This completes the proof of (1). QED. . i

’ We next give the lemmas about the state of the components of SysS{G). The proofs are ?

) almost identical to that for Lemma 6, and so are left to the reader. ?

gt

1]

Lemma 7 Let a be a schedule of CS, and let ¢ be the state of CS after a. Then 2:

1. s.CLUSTEROKvec[C,i|=true if and only if a contains CLUSTEROK(C,s). .

Ay

\ 2. s.CLUSTERGOsent[C,i|=true if and only if a contains CLUSTERGO(C,s). .“‘

‘(

’ .‘l

Lemma 8 Let a be a schedule of SL(C), and let s be the state of SL(C) after a. Then "

1. 8.0Krec[p,i]=true if and only if a contasns OK(p,i). é

: \!

2. 5.GOsent[p,i|=true if and only if a contains GO(p,i). -

m

3. s.CLUSTEROKasent[i|=true if and only if a contains CLUSTEROK(C,s). '

4. 8.CLUSTERGOrecfi|=true if and only if a contains CLUSTERGO(C ). )

Now we can prove the claim above, which says that intracluster synchronization and inter- Y

cluster synchronization combine to provide synchronization for the whole graph G. ,

‘¢

Gy

Lemma 9 SysS(G) implements S(G). :,3:

8
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Proof: Since every input and output operation of S(G) is an input or output of some

component SL(C) from which the system SysS(G) is formed, we only need to prove that
whenever a is a schedule of SysS(G), and 8 denotes the subsequence of a consisting of the
operations of S(G), then 8 is a schedule of S(G). This is proved by induction on the length
of a. If a is empty, then so is 3, so that g is a schedule of S(G). So let us assume that a
= a'x. Letting B' denote the subsequence of o' consisting of operations of S(G), we have by
the induction hypothesis that 3’ is a schedule of S(G). If x is not an operation of S(G), then
B = B', and we are done. Otherwise g = #'x. If x is OK(p,i), then x is an input to S(G),
and so0 is enabled after any schedule of S(G), by the Input Condition, and therefore g is a
schedule of S(G).

Thus we suppose that x is GO(p,i). Let s denote the state of SL(C) after o, where C is
the cluster containing p. Let t denote the state of S(G) after 5. We have that « is enabled
(as an operation of SL(C)) in t, and we will deduce that it is enabled (as an operation of
S(G)) in s. By the preconditions for x, t.GOsent[p,i] = false, and thus by Lemma 8 o'
does not contain GO(p,i). Therefore 8’ does not contain GO(p,i), and so by Lemma 6,
8.GOsent[p,i] = false. Also by the preconditions, either i = 1 or t.GOsent[p,i] = true. If
i # 1, by Lemma 8 o' contains GO(p,i-1), and thus 8' contains GO(p,i-1). Therefore, by
Lemma 6, either i = 1 or 8.GOsent[p,i-1] = true.

Suppose that i # 1. Then the preconditions of x as an operation of SL(C) imply that
t.CLUSTERGOrec|i] = true and that t.OKrec|q,i-1] = true for all q € Neighbors(p) N C. By
Lemma 8, o' contains CLUSTERGO(C,i) and OK(q,i) for all 9 € Neighbors(p) N C. Now,
by examining the preconditions for the operation CLUSTERGO(C,i) of the intercluster syn-
chronizer CS, and Lemma 7, we see that the prefix of a' preceding the CLUSTERGO(C,i)
operation must contain CLUSTEROK(D,i-1) for all clusters D that are neighbors of C.
Therefore, by the preconditions of the operation CLUSTEROK(D,i-1) of SL(D) and Lemma
8, we deduce that the prefix of o' preceding each CLUSTEROK(D,i-1) contains the opera-
tions OK(q,i-1) for all nodes q in cluster D. Thus a’ (and hence 8') contains OK(q,i-1) for all
q € Neighbors(p), as any such q is either in Neighbors(p) N C, or else is a member of a cluster
D that is in Neighbors(C). By Lemma 6, s.0Krec|q,i-1] = true for any q € Neighbors(p).
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Thus we have shown that s.GOsent|[p,i] = false, that i = 1 or 8.GOsent|p,i-1] = true, and
that i=1 or (s.0Krec|q,i-1] = true for all q € Neighbors(p)). That is, we have shown that x
is enabled in state s, completing the proof. Q.E.D.

4.6 The Main Theorem

We can now combine the results given sbove to verify the correctness of the detziled alzo-

rithm for network synchronization.
Theorem 10 DistSys5(G) smplements 5(G).

Proof: We first consider DistSysCS, the automaton that results from composing all the
automata NDCS(p), LECS(C) and LICS(p,q), and then hiding all operations except CLUS-
TERGO(C,i) and CLUSTEROK(C,i). By the associativity of composition (and the fact
that renaming and hiding behave well in composition), this is equivalent to compoaing all
the automata SysCLCS(C) and LICS(C,D), and then hiding the remaining operations except .
CLUSTERGO(C,i) and CLUSTEROK(C,i). Since by Lemma 4, SysCLCS(C) implements
CLCS(C) for each C, we have that DistSysCS implements SysCS by Lemma 2. Since by
Lemma 5, SysCS implements CS, we deduce that DistSysCS implements CS.

Now DistSysS(G) is equivalent to DistSysS(G)’, the result of composing all the automata
NDCS(p), NDSL(p), LECS(C), LESL(C), LICS(p,q) and LISL(p,q), and then hiding all
operations except GO(p,i) and OK(p,i). But DistSysS(G)’ is, by the associativity of com-
position, equivalent to the result of composing DistSysCS with all the automata SysSL(C),
and then hiding operations. Since by Lemma 3 SysSL(C) implements SL(C), and, as we saw
above, DistSysCS implements CS, we can deduce from Lemma 2 that DistSysS(G)’ imple-
ments SysS(G), the result of composing CS with all the automata SL(C) and then hiding
all operations except GO(p,i) and OK(p,i). By Lemma 9, SysS(G) implements S(G), and
therefore DistSysS(G)’ implements S(G). Thus DistSysS(G) implements S$(G). Q.E.D.

5 Subsidiary Correctness Proofs

We will now give the proofs of the claims made and used in the previous section about the

correctness of the simpler algorithms such as synchronizers a and f. First, we prove the
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fundamental lemmas about the behavior of a link automaton, as these are used repeatedly

in the following proofs.

Lemma 11 Let a be a schedule of LIy (p,q), and let s be the state of LIy (9,9) after a.
Then for M € M, the multiplicity of M as an element of s.contents is z—y, where z ts

the number of occurrences in a of send(p,q)M and y ts the number of occurrences in a of

rec(p,q/M.

Proof: By induction on the length of a. The base case, when a is empty, is trivial since
then s is the initial state, so s.contents is empty and the multiplicity of M is zero. On the
other hand x and y are also both zero. Thus we suppose a = a'x, and let s’ be the state of
LI (p,q) after . If x is send(p,q)M’ or rec(p,q)M’ for M’ # M, then by the postconditions
above the multiplicity of M is the same in s.contents as in s’.contents. Also the number of .
occurrences of send(p,q)M and rec(p,q)M are the same in « as in a'. Thus the lemma follows
from the inductive hypothesis that the multiplicity of M in s’.contents equals the difference
between the number of occurrences of send(p,q)M and rec(p,q)M in o'.

If x is send(p,q)M, the multiplicity of M in s.contents is one more than its multiplicity
in s’.contents. On the other hand a contains one more occurrence of send(p,q)M than o',
and a and o' contain the same number of occurrences of rec(p,q)M. Therefore the lemma
follows from the induction hypothesis. If x is rec(p,q)M the multiplicity of M in s.contents

is one less than its multiplicity in s’.contents but a contains the same number of occurrences

S oA

of send(p,q)M than o', and «a contains one more occurrence of rec(p,q)M than a'. Thus the
lemma follows from the induction hypothesis. An obvious consequence of this lemma is the

following:

Lemma 12 Let a be a schedule of LIy (p,q) and let M € M. Then a contains at least as
many occurrences of send(p,q)M as of rec(p,q)M.

5.1 Correctness of Intracluster Synchronization

We prove Lemma 3, which says that algorithm g is correct.

We first study the components out of which SysSL(C) is formed.

Lemma 13 Let a be a schedule of NDSL(p) and let a be the state of NDSL(p) after a. Then
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1. 5.OKrec[p;i]=true if and only if a contains OK(p,i).

2. 8.SAFErec[qi|=ttue if and only if a contains rec(q,p)SAFE(q,s). 0‘(
NI
3. 5.GOsent[p,i/=true if and only if a contains GO(p,i). |
4. s.pulsefij=true if and only if a contains rec(parent(p),p)PULSE(parent(p),i). &
C"._\:',
5. The multiplicity of (p,q) PULSE(p;i) as an element of s.mess equals z—y where z is the %f
number of occurrences of rec(parent(p),p)PULSE(parent(p),i) in a and.y is the number N 1
of occurrences of saend(p,q)PULSE(p,i) in a. é{x
I
6. The multiplicity of (p,parent(p))SAFE(p,i) as an element of s.mess equals z—y where z "
e
is the number of occurrences in a— B of any of operations OK(p,i) or rec(q,p)SAFE(q,i)
for q € children(p) (where 8 is the longest prefiz of a not containing at least one oc- o
!
currence of each of the operations OK(p,i) and rec(q,p)SAFE(q,i) for ¢.€ children(p)), :‘:;
and y is the number of occurrences of send(p,parent(p))SAFE(p,s) in a. , iE:
Immediate consequences of the previous lemma are given next. ."'
]
Lemma 14 Let ¢ € children(p). If o is a schedule of NDSL(p) then a contuine at least as '.:‘g:
Y
many occurrences of rec(parent(p), 9} PULSE (parent(p),i) as of send(p,q)PULSE(n,s). :::‘;
a
Lemma 15 If a is a schedule of NDSL(p) that contains send(p,parent(p))SAFE(p,i) then ) :‘&:
1
a contains rec(q,p)SAFE(q,i) for all ¢ € children(p), and a also contains OK(p,s) . :5;
!‘ i
. |.‘,
Lemma 16 Let o be a schedule of LESL(C) and let s be the state of LESL(C) after a. Then y
i
1. 8.0Krec[q,i|=true if and only if @ contains OK(q,i). 3::
N
2. 8.GOsent[q,i]=true if and only if a contains GO(q,i). "
N
8. s.SAFErec[q,i|=true if and only if a contains rec(q,p)SAFE(p,i), where p=leader(C). '
e
4. 8.CLUSTERGOrec[q,i/=true if and only if a contains CLUSTERGO(C,i). NG
i
W
5. a.clustersafefi/=true if and only if a contains OK(p,i) and rec(q,p)SAFE(q,5) f+7 p= .s'(_
leader(C) and all g € children(p). ’
A
6. s.pulsefi|=true if and only if a contains CLUSTERGO(C,i) and either i=1 or s.cluster- '::'..\‘;
XY
safefi-1]=true. ':“.'.
1:':¢
®
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7. s. CLUSTEROKsent[i/]=true if and only if @ contains CLUSTEROK(C,i).

8. For p = leader(C), the multiplicity of (p,q)PULSE(p,i) as an element of s.mess equals

z—y where z 13 the number of occurrences in a—f of any of the operations CLUS-
| TERGO(C,i), OK(p,i-1) or rec(q,p)SAFE(q,i-1) (where B is the longest prefiz of a .
i not containing CLUSTERGO(C,i) and (if ¢ # 1) at least one occurrence of each of :
: OK(p,i-1) and rec{yq,p)SAFE(q,i-1) for q € children(p)), and y is ithe number of occur-

( rences of send(p,q)PULSE(p,i) in a.

We next give an immediate consequence of part (7) of the Lemma above.

Lemma 17 Let p = leader(C), and q € children(p). If a is a schedule of LESL(C) that
contains send(p,q)PULSE(p,i) then a contains CLUSTERGO(C,i) and (if i # 1} OK(p,i-1)
and rec(q,p)SAFE(q,i-1) for all ¢ € children(p).

The next result is an immediate consequences of the preconditions for CLUSTEROK(C,i)
as an operation of LESL(C), and (5) of Lemma 18.

Lemma 18 Let p = leader(C). If a 18 a schedule of LESL(C) that contains CLUSTEROK(C,i),
then a contains OK(p,i) and rec(q,p)SAFE(q,i) for all g € children(p).

We next prove the fundamental invariants of the system SysSL(C) that capture the

principles of the broadcast and convergecast paradigms of message flow. We recall that X
SysSL(C) is formed by composing NDSL(p) for p € C — leader(C), LESL(C), and LISL(p,q) ‘

for p and q in C, and then hiding certain operations, so its schedules are just schedules of

()

the composition.

Lemma 19 Let « be a schedule of the automaton that results form composing NDSL(p) for p
€ C ~ leader(C), LESL(C), and LISL(p,q) for p and g in C. If a contains send(p,parent(p))- :
" SAFE(p,i) for some p such that p € C, p # leader(C), then a contains OK(q’s) for all ¢’ "

such that ¢’ ia a descendant of p in the tree of C.

Proof: We use induction on the height of p in the tree of C. The basis case, when p has

height 1, is when p is a leaf of the tree. In this case we need only check that a contains ;

OK(p,i), as p has no descendants except itself. This case is immediate from Lemma 15. So
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suppose that the Lemma has been proved for all non-leader nodes of height at most k, and
that p has height k+1, for k > 1. By Lemma 15, a contains rec(q,p)SAFE(q,i) for all q €
children(p), and also OK(p,i). By Lemma 12, a must contain send{p’,p)SAFE(p’,i) for all p’
€ children(p), but such p’ have height at most k, and none is leader(C). Thus the induction
hypothesis implies that a contains OK(q’,i) for all q’ such that q’ is a descendant of p’ where
p’ is a child of p. However any q’ that is a descendant of p is either p itself or a descendant
of a child of p. Thus a contains OK(q’,i) for all q’ that are descendants of p in the tree,

Q.ED.

Lemma 20 Let o be a schedule of the automaton that results form composing NDSL(p) for
p € C — leader(C), LESL(C), and LISL(p,q) for p and q in C. Let s be the state of LESL(C)
after a. If a.clustersafefi|=true then a contains OK(q’,i) for all ¢’ € C.

Proof: By Lemma 16 a contains an OK(p,i) for p=leader(C) and a rec(q,p)SAFE(q,i) for
all q € children(p). By Lemma 12 o contains a send(q,p)SAFE(q,i) for all q € children(p)
that then by Lemma 19 implies that & contains OK(q’,i) for all q’ descendants of all q €
children(p). Thus we have shown that o coutains OK(q’,i) for allq’ € C . Q.E.D.

Lemma 21 Let o be a schedule of the automaton that results form composing NDSL(p) for
p € C — leader(C), LESL(C), and LISL(p,q) for p and q in C. Suppose that s.pulsefi/=true,
where s is the state of the NDSL(p) (or LESL(C) if p=leader(C)) after a. Then a contains
CLUSTERGO(C,3) and also, either i=1 or a contains OK(q,i-1) for all g € C.

Proof: We use induction on the depth of p in the tree of C. The basis case, when p has
depth 1, is when p=leader(C). From Lemn;a 16, we see that a contains CLUSTERGO(C,i)
and that either i=1 or else s.clustersafe[i-1)=true. By Lemma 20, either i=1 or a contains
OK(q,i-1) for all q € C. Thus we suppose that the lemma has been proved for all nodes
of depth at most k, and that p has depth k+1, for k > 1. Then p is not the leader of
C. By Lemma 13 s.pulse(i|=true implies a contains rec(parent(p),p)PULSE(parent(p),i),
which by Lemma 12 implies that a contains a send(parent(p),p)PULSE(parent(p),i). Now
the preconditions of send(parent(p),p)PULSE(parent(p),i) imply s’.pulse[i]=true, where s’
is the state of NDSL(parent(p)) (or LESL(C), if parent(p)=leader(C)), immediately before
the operation send(parent(p),p) PULSE(parent(p),i). But parent(p) has depth k, and so the
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induction hypothesis implies that a prefix of a, and thus a itself, contains CLUSTERGO(C,i)

and also that either i=1 or a contains OK(q,i-1) for all q € C. Q.E.D.
Now we are ready to prove the claim, given as Lemnma 3, that SysSL(C) acts as a modified

- .

synchronizer for the whole cluster C, by following algorithm 8.

f Lemma 22 SysSL(C) implements SL(C).

- - -
i e e

Proof: Since every input and output operation of SL(C) is an input or output of SysSL(C),

)

we only need to prove that whenever a is a schedule of the composition SysSL(C), and 8
; denotes the subsequence of a consisting of operations of SL(C), then 8 is a schedule of SL(C).
._ This is proved by induction on the length of a. If a is empty, then so is 5, so that S is a
b schedule of SL(C). Therefore let us assume that a = a'r. Letting §’ denote the subsequence 8
of a' consisting of operations of SL, we have by the induction hypothesis that £’ is a schedule

i of SL. If » is not an operation of SL, then 8 = #, and we are done. Otherwise § = f'x. If x - z
,: is CLUSTERGO(C,i) or OK(p,i) where then = is an input to SL(C), and so is enabled after - 3
" any schedule of SL(C), by the Input Condition, and therefore 8 is a schedule of SL(C). c:
.:, If » is CLUSTEROK(C,i), then by preconditions for x as operation of LESL(C) and
:' Lemma 16, o' must not contain CLUSTEROK(C,i) and also s.clustersafe(i)=true, where '
) s is the state of LESL(C) after a'. By Lemma 20, o/ contains OK(p,i) for all p € C . ::
. Therefore, transferring these facts to §', we see that 8' contains OK(p,i) for all p € C, and :
g ) that 8’ does not contain CLUSTEROK(C,i). Let t denote the state of SL(C) after §'. By E:
: Lemma 8, t.OKsent[p,ij=true for all p € C, and t.CLUSTEROKsent|[i|=false. Examining :é
)

the preconditions for 7 as an operation of SL(C), we see that x is enabled after #', and thus A
4 B is a schedule of SL(C). 3
If x is GO(p,i), then let s denote the state after o’ of NDSL(p) (or LESL(C) if p=leader(C)).
By the preconditions for x as an operation of NDSL(p) or LESL(C), and Lemma 16 or Lemma
13, o' does not contain GO(p,i) and also, if i#1, o' contains GO(p,i-1). Also, the precon-

-

K dition s.pulse[i]=true for » as an operation of NDSL(p) or LESL(C), implies by Lemma 21 .
' that o' contains CLUSTERGO(C,i) and also that, if i # 1, o' contains OK{q,i-1) for all .ﬁ
0
i q € C. Thus 8’ does not contain GO(p,i) and contains CLUSTERGO(C,i), and if i # 1, ,:
. also contains GO(p,i-1) and OK(q,i-1) for all q € C. Now, by the preconditions for » as an '
A
: operation of SL(C), and by Lemma 8, we have that x is enabled after §', so 8 is a schedule .:
’ 2
1}
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of SL(C) as required. Q.E.D.

= e

5.2 Correctness of the Cluster Representative

Now we prove Lemma 4, which says that the broadcast and convergecast, used by the

-~
ol
T

-~
SN

>

automata NDCS(p) and LECS(C) to communicate within a cluster C, work as the cluster

representative CLCS(C) is supposed to. Once again, we first relate the schedules of the

automata involved to the states in which the automata are left. . 1

Lemma 23 Let a be a schedule of CLCS(C), and let o be the state of CLCS(C) after a. .
Then R

!.
1. s.CLUSTERGOsent[i/=true if and only if a contains CLUSTERGO(C,). ,’.,
4

2. 8.CLUSTERSAFErec[D,i|=true #f and only if a contains rec(D,C)CLUSTERSAFE(D,i). :::,

N ]

3. the multiplicity of (C,D)CLUSTERSAFE(C,i) as an element of s.mess equals z—y, . :;:
where z 18 the number of occurrences of CLUSTEROK(C,i) in a and y is the number ?

of occurrences of send(C,D)CLUSTERSAFE(C,i) in a. "

‘C.'

' )

For later use, we observe the following immediate consequence of (3) above. E;'..

]
2

Lemma 24 Let a e o schedule of CLCS(C). Then o contains at least as many occurrences o
of CLUSTEROK(C,i) as of send(C,D)CLUSTERSAFE(C,i). )
)
o
We now study the components out of which SysCLCS(C) is formed. -
Lemma 25 Let a be & schedule of NDCS(p) and let s be the state of NDCS(p) after a. .-‘
Then ..;:
\}
1. s.CLUSTERSAFErec(q,i|=true if and only if a contains rec(q,p)CLUSTERSAFE(q,i}. ) .
2. s.READYrec[q,i]=trae if and only if a contains READY(q,s). ‘:‘:
I "
3. If q € specialchildren(p) U Preferred(p), the multiplicity of (p,q) CLUSTERSAFE(p,5) ':::
a3 an element of s.mess equels 2—y where z is the number of occurrences of rec(parent(p),p)- i
CLUSTERSAFE(parent(p),i) in a and y is the number of occurrences of send(p,q)- o
CLUSTERSAFE(p,i) in a. R
s
\J

4
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4. The multiplicity of (p,parent(p))READY (p,i) as an element of s.mess equals z—y where
z 18 the number of occurrences in a—p of any of the operations rec(q,p)READY (q,i) for
q € specialchildren(p) or rec(q’,p)CLUSTERSAFE(q’) for ¢’ € Preferred(p), (where
B s the longest prefizx of a not containing at least one occurrence of all the operations
rec(q,p)READY(q,i) for q € specialchildren(p) and rec(q’,p)CLUSTERSAFE(q’,s) for
q’ € Preferred(p)), and y is the number of occurrences of send(p,parent(p))READY (p,i)

n a.
Immediate consequences of (3) and (4) of the previous lemma are given next.

Lemma 26 Let q € children(p) U Preferred(p). If o is a schedule of NDCS(p) then o
contains at least as many occurrences of rec(parent(p),p)CLUSTERSAFE(parent(p),i) as of
send(p,q)CLUSTERSAFE(p,i).

Lemma 27 If a is a schedule of NDCS(p) that contains send(p,parent(p))READY (p,i)
then a contains rec(q,p)READY(q,i) for all ¢ € specialchildren(p), and a also contains
rec(q’,p)CLUSTERSAFE(q’i) for all ¢’ € Preferred(p).

We similarly study LECS(C).

Lemma 28 Let a be a schedule of LECS(C) and let s be the state of LECS(C) after a.
Then

. 8.READYrec[q,i/=true if and only if a contains rec(q,p)READY(q,i), where p=leader(C).

. 8.CLUSTERSAFErec[q,i]=true if and only if a contains rec(q,p)CLUSTERSAFE(q,3),
where p=leader(C).

. 8. CLUSTERGOsent[i|=true if and only if a contains CLUSTERGO(C,i).

. For p = leader(C) and q € specialchildren(p) U Preferred(p), the multiplicity of (p,q)-
CLUSTERSAFE(p,i) as an element of s.mess equals z—y where z is the number of
occurrences of CLUSTEROK(C,i) in o and y is the number of occurrences of send(p,q)-
CLUSTERSAFE(p,i) in a.

We next give an immediate consequence of (4) above.
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Lemma 29 Let p = leader(C), and g € children(p} U Preferred(p). If a is a schedule

-

of LECS(C) then a contains at least as many occurrences of CLUSTEROK(C,i) as of
send(p,q)CLUSTERSAFE(p,i).

o - -

The next result is an immediate consequence of the preconditions for CLUSTERGO(C,i) as

an operation of LECS(C), and ‘2) of Lemma 28.

Lemma 30 Let p = leader(C). If a i3 a schedule of LECS(C) that conteins CLUSTERGO(C,i)
for a value 1 > 1, then a contains rec(q,p)READY(q,i-1) for all g € specialchildren(p), and
a also contains rec(q’,p) CLUSTERSAFE(q’,i-1) for all g’ € Preferred(p).

We next prove the fundamental invariants of the system SysCLCS(C) that capture the
principles of the broadcast and convergecast paradigms of message flow. We recall that
SysCLCS(C) is formed by composing NDCS(p) for p € C — leader(C), LECS(C), and
LICS(p,q) for p and q in C, and then renaming and hiding certain operations.

Lemma 31 Let a be a schedule of the automaton that results form composing NDCS(p) for
p € C — leader(C), LECS(C), and LICS(p,q) for p and q tn C. Let p and q be such that p €
C and q € specialchildren(p) U Preferred(p). Then a contains at least as many occurrences

of CLUSTEROK(C,i) as of send(p,qJCLUSTERSAFE(p,1).

=, P R
i -~ - ol O - - -
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Proof: = We use induction on the depth of p in the tree of C. The basis case, when p : ..:,
has depth 1, is when p=leader(C). This case is immediate from Lemma 29. So suppose ::E
that the lemma has been proved for all nodes of depth at most k, and that p has depth - ':j
k+1, for k > 1. Then p is not the leader of C. Let x denote the number of occurrences i:'
of send(p,q)CLUSTERSAFE(p,i) in a. By Lemma 26, a contains at least x occurrences "

of rec(parent(p),p) CLUSTERSAFE(parent(p),i), and therefore by Lemma 12, it contains at
least x occurrences of send(parent(p),p)CLUSTERSAFE(parent(p).i). However parent(p)

has depth k, and so the induction hypothesis implies that a contains at least x occurrences by
of CLUSTEROK(C,i), as required. QE.D. Q)
0
Lemma 32 Let a be a schedule of the automaton that results form composing NDCS(p) for p 'i
€ C — leader(C), LECS(C), and LICS(p,q) for p and g in C. If & contains send(p,parent(p))- \;.‘
X
READY(p,i) for some p such that p € C, p # leader(C), then a contains rec(q,q’) CLUSTER- :::
“0

42
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SAFE(q,i) for all q and ¢’ such that ¢’ is a descendant of p in the tree of C, and q €
Preferred(q’).

Proof: We use induction on the height of p in the tree of C. The basis case, when p has
height 1, is when p is a leaf of the tree. In this case we need only check that a contains
rec(q,p)CLUSTERSAFE(q,i) for q € Preferred(p), as p has no descendants except itself. This

case is immediate from Lemma 27. So suppose that the Lemma has been proved for all non-

leader nodes of height at most k, and that p has height k+1, for k > 1. By Lemma 27, a con-
tains rec(q,p)CLUSTERSAFE(q,i) for all q € Preferred(p), and also rec(p’,p)READY(p’,i)

for all p’ € specialchildren(p). By Lemma 12, a must contain send(p’,p)READY(p’,i) for all

p’ € children(p), but such p’ have height at most k, and none is leader(C). Thus the induc-

tion hypothesis implies that a contains rec(q,q’)CLUSTERSAFE(q,i) for all q and q’ such

that q’ is a descendant of p’ where p’ is a special child of p, and such that q € Preferred(q’).

However for any q’ that is a descendant of p and for which q € Preferred(q’), q’ is either p

itself or a descendant of a special child of p. Thus we have completed the proof. Q.E.D.

Now we are ready to prove the claim, Lemma 4 that SysCLCS(C) acts as a representative

of the whole cluster C, within algorithm a.

Lemma 33 SysCLCS(C) implements CLCS(C).

Proof: Since every input and output operation of CLCS(C) is an input or output of

SysCLCS(C), we only need to prove that whenever a is a schedule of the composition

SysCLcg(C), and B denotes the subsequence of a consisting of operations of CLCS(C),

then B is a schedule of CLCS(C). This is proved by induction on the length of a. If a is

empty, then so is 4, so that 3 is a schedule of CLCS(C). Therefore let us assume that a = a'x.

Letting 8’ denote the subsequence of o' consisting of operations of CS, we have by the induc-

tion hypothesis that 8’ is a schedule of CS. If 7 is not an operation of CS, then g = §', and we
are done. Otherwise # = #'x. If » is CLUSTEROK(C,i) or rec(D,C)CLUSTERSAFE(D,i)
where then 7 is an input to CLCS(C), and so is enabled after any schedule of CLCS(C), by
the Input Condition, and therefore 8 is a schedule of CLCS(C).

If = is send(C,D)CLUSTERSAFE(C,i), then before renaming (as an operation of the
automaton that results form composing NDCS(p) for p € C — leader(C), LECS(C), and

0 4 0
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LICS(p,q) for p and q in C), 7 was send(p,q) CLUSTERSAFE(p,i) where p € C, q € Pre-
ferred(p), and q € D. Then by Lemma 31, « (and hence o' and ') contains at least x occur-
rences of CLUSTEROK(C,i), where x is the number of occurrences of send(C,D)CLUSTER-
SAFE(C,i) in a, since these were exactly the occurrences of send(p,q) CLUSTERSAFE(p,i)
before renaming. Thus 8’ contains x-1 occurrences of send(C,D)CLUSTERSAFE(C,i). By
Lemma 23, (C,D)CLUSTERSAFE(C,i) is an element of t.mess, where t is the state of
CLCS(C) after £, and thus = is enabled in state t. Thus g is a schedule of CLCS(C).

If x is CLUSTERGO(C,i), then before renaming (as an operation of the automaton that
results form composing NDCS(p) for p € C — leader(C), LECS(C), and LICS(p,q) for p and q
in C), » was also CLUSTERGO(C,i). By the preconditions for x as an operation of LECS(C)
and Lemma 28, o' must not contain CLUSTERGO(C,i). Also, if i#1, o' (before renaming)
must contain CLUSTERGO(C,i-1) and rec(q,p) CLUSTERSAFE(q,i-1) for p = leader(C) and
all q € Preferred(p), and rec(p’,p)READY(p’,i-1) for p = leader(C) and all p’ € children(p).

- oen v
o TR

Then, by Lemma 12, o' (before renaming) contains send(p’,p)READY(p’,i-1) for all p’ € chil-

)
)
3
P
|"

dren(p), and hence (by Lemma 32) before renaming, o contains rec(q,q’) CLUSTERSAFE(q,i-
1) for all q’ descended from a child of p, and q € Preferred(q’). Thus we have shown that,
before renaming, o' contains rec(q,q’)CLUSTERSAFE(q,i-1) for all ¢’ desc'ended from p
(that is, all " € C}, and all q € Preferred(q’). Therefore (after renaming) o' contains
CLUSTERGO(C,i-1) and rcc(D,C)CLUSTERSAFE(D,i-1) for all D € Neighbors(C). We
can transfer all the above conclusions to f', deducing that g’ does not contain CLUS-
TERGO(C,i), and if i # 1, #' contains CLUSTERGO(C,i-1) and rec(D,C)CLUSTERSAFE(D, -
1) for all D € Neighbors(C). By the preconditions for 7 as an operation of CLCS(C) and
Lemma 23, we have that = is enabled after £', so # is a schedule of CLCS(C) as required.
Q.E.D.

5.3 Correctness of Intercluster Synchronization

We next prove the claim of Lemma 5, that algorithm a provides correct synchronization

between the clusters.

Lemma 34 SysCS implements CS.
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Proof: Since every input and output operation of CS is an input or output of SysCS, we
only need to prove that whenever « is a schedule of SysCS, and 8 denotes the subsequence of
a consisting of the operations of CS, then g is a schedule of CS. This is proved by induction

on the length of a. If @ is empty, then so is 8, so that 8 is a schedule of CS. Therefore let

«:: us assume that a = o'7. Letting 8' denote the subsequence of o' consisting of operations of
B
fi CS, we have by the induction hypothesis that 8’ is a schedule of CS. If r is not an operation
2
" of CS, then 8 = ', and we are done. Otherwise 8 = f'x. If x is CLUSTEROK(C,i), then «

is an input to CS, and so is enabled after any schedule of CS, by the Input Condition, and
B therefore 8 is a schedule of CS.
Thus we suppose that x is CLUSTERGO(C,i). Let s denote the state of CLCS(C) after

o'. Let t denote the state of CS after 4. We have that = is enabled (as an operation

! of CLCS(C)) in t, and we will deduce that it is enabled (as an operation of CS) in s.
g';'. By the preconditions for x, t. CLUSTERGOsent|i] = false, and thus by Lemma 23 o' does
4 not contain CLUSTERGO(C,i). Therefore 8' does not contain CLUSTERGO(C,i), and

so by Lemma 7, s. CLUSTERGOsent[C,i] = false. Also by the preconditions, either i = 1

Y,

S or t.CLUSTERGOsent[i] = true. If i # 1, by Lemma 23 o' contains CLUSTERGO(C,i-
)

E: 1), and thus #' contains CLUSTERGO(C,i-1). Therefore, by Lemma 7, either i = 1 or
! s.CLUSTERGOsent[C,i-1] = true.

o Suppose that i # 1. Then the preconditions of 7 as an operation of CLCS(C) imply
e

::’ that t.CLUSTERSAFErec|D,i-1] = true for all D € Neighbors(C). Thus by Lemma 23 o'
:‘e ) contains rec(D,C)CLUSTERSAFE(D,i-1) for all D € Neighbors(C), and hence by Lemma 12
- o' contains send(D,C)CLUSTERSAFE(D,i-1). By Lemma 24 applied to CLCS(D), o' con-
E: tains CLUSTEROK(D,i-1). Therefore 8’ contains CLUSTEROK(D,i-1), and so by Lemma
Ll

o 7 s.CLUSTEROKTrec(D,i-1] = true for ali D € Neighbors(C).

%,

» Thus we have shown that s. CLUSTERGOsent[C,i] = false, that i = 1 or s. CLUSTERGO-
: sent[C,i-1] = true, and that i=1 or (s.CLUSTEROKrec[D,i-1] = true for all D € Neigh-
:E bors(C)). That is, we have shown that = is enabled in state s, completing the proof. Q.E.D.
K
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6 Message and Time Analysis g
o
We will now show that operational reasoning in the I/O model can be used to prove results ::'.
about the message and time performance of the algorithm, as well as the safety property -
of implementing a specification. In order to do this, however we will need to restrict the ‘;::‘
environment of the system, that is, the ways in which the input operations OK(p,i) arrive. :E
We say that a schedule of the distributed synchronization system DistSysS(G) is well-formed :‘:‘f
if any occurrence of OK(p,i) is preceded by GO(p,i) and is not preceded by OK(p,i). Thus a ’ ‘%
well-formed schedule reflects the behavior of the system when the environment is issuing only 4 g@:,‘
one OK message at each node for each round, and is not issuing that until the synchronizer ::l::
has allowed the round to start. ;
We now show that in a well-formed schedule every operation can occur at most once. :.
Lemma 35 Let o be a well-formed schedule of DistSysS(G). Then o contains at most one gj‘;
occurrence of each operation. %
Proof: Since the DistSysS(G) is equivalent to DistSysS(G), we can and will regard « as "o\:'
a schedule of DistSysS(G)’. We use induction on the length of a. The basis case, when a EE:E
is empty, is trivial. Thus we suppose a=a'r, and that o' contains at most one occurrence ::‘
of each operation. In order to show the same for «, we need only prove that a' does not "?’:
contain . 4 :':;i‘
If = is OK(p,i) this is immediate from the definition of well-formed. , ?:E.:I’
If 7 is rec(p,q)M for some message M, this follows from Lemma 12, since by the induction '
hypothesis o' (and thus a) contains at most one occurrence of send(q,p)M. ;?‘3
If 7 is GO(p,i) or CLUSTERGO(C,i) or CLUSTEROK(C,i), this is a consequence of the .::::
preconditions for 7 as an operation of the appropriate component automaton. Each of these ‘ ‘
operations has a precondition that checks that the operation has not already occurred, for 20
example s’.GOsent[i]=false is a precondition for GO(p,i), and by Letnma 13 this means that ‘ '
o' does not contain GO(p,i). e
If = is send(p,q)PULSE(p,i) and p is not the root of its tree, this follows from part i
(5) of Lemma 13, since the multiplicity of a message in a multiset cannot be negative,
and by the induction hypothesis o' (and hence a) contains at most one occurrence of \
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rec(parent(p),p)PULSE(parent(p),i). If # is send(p,q)PULSE(p,i) where p=leader(C), the ‘,
lemma follows similarly from part (8) of Lemma 186, since by the induction hypothesis each ::',
operation CLUSTERGO(C,i), OK(p,i-1) and rec(q’,p)SAFE(q’,i-1) can occur at most once ’:\-?
in o' and so all except one of these (namely the one that occurs last) occur in a prefix of a v
not containing all of them. :::%
If » is send(p,q)SAFE(p,i) the lemma follows from part (6) of Lemma 13, since the E:t
multiplicity of a message in a multiset is non-negative, and only the last one of the operations ";‘:
OK(p,i) or rec(q’,p)SAFE(q’,i) for q’ € children(p), will not occur in a prefix of a not ‘3
containing all of these operations. .4,."
If = is send(p,q)READY(p,i) the lemma follows from part (4) of Lemma 25 in the same ;%
way. 4 o
If = is send(p,q)CLUSTERSAFE(p,i) the lemma follows from part (4) of Lemma 28, or :E::
part (3) of Lemma 25, depending on whether or not p is the leader of its tree. ':::‘
Thus we have proved the lemma for each possibility for #. Q.E.D. :‘55;
6.1 Message Complexity §
We now show how we can bound the number of messages sent in an execution of the al-
gorithm. We will speak of the messages PULSE(p,i), SAFE(p,i-1), CLUSTERSAFE(p,i-1) :::'
and READY(p,i-1) as all belonging to round i, because they are sent in preparation for is- ?,:
suing a GO(p,i) operation. We note that if « is a schedule of DistSysS(G) containing an 3
operation send(p,q)M for a message M belonging to round i, and i # 1, then a contains s:‘
at least one operation OK(p’,i-1). If M is SAFE(p,i-1) this is proved in Lemma 19. If b
M is CLUSTERSAFE(p,i-1) then Lemma 31 implies that a contains CLUSTEROK(C,i-1), ':e?:
whose precondition s’.clustersafe(i-1)=true implies by Lemma 20 that a contains OK(p,i-1) “'{
as desired. If M is READY(p,i-1) then Lemma 32 shows that a contains some rec(q’,q”)- !i
CLUSTERSAFE(q’,i-1) operation, for q’ a descendant of p, and thus a send(q’,q” )CLUSTER- Mt
SAFE(q’,i-1) operation, and hence some OK(p’,i-1) operation, by the above. Finally if M is ‘:
PULSE(p,i) then « contains OK(q’,i-1) for all q’ in p’s cluster, by Lemma 21. This result » \
implies for a well-formed schedule of DistSysS(G), that if it contains a message belonging to -
round i, then it contains GO(p,i-1) for some p. .'.0::
X
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Now we can prove that the number of messages used per round is bounded by four times
the number of edges that are preferred edges or tree edges. We say that round i is commenced

in the execution « if o contains some GO(p,i) operation.

Lemma 36 Suppose a i3 a well-formed schedule of DistSysS(G) for which iy is the largest
round number commenced. Then the number of send(q,q’)M operations in a is at most

4(ig+1) times the number of tree or preferred edges.

Proof: The observations above show that a contains no operation send(q,q’)M where M
is a message belonging to a round greater than ig+1. Since no the link automata on edges,
other than tree or preferred edges, have empty message sets, and each of the two automata
on a preferred or tree edge has at most 2 messages belonging to each round in its message

set, the result is immediate from Lemma 35. Q.E.D.

6.2 Time Complexity and Liveness

In order to discuss the time complexity of the algorithm, we introduce the idea of a ‘timed
execution’. We call the combination of an execution sq,71,51,79,89,... of automaton £ and

a nondecreasing sequence of nonnegative real numbers (‘times’) tq,ts,...,, where there are

the same number of t; as there are operations 7; in the execution, a timed ezecution of A.

Intuitively, we understand this combination as indicating that x; occurred at time t—i. As a

convention we put tn = 0. For any nonnegative t, we say that s; is a state of the automaton
P 0 y g 1

at time t if t; <t < t;, ;. Note that since the times need not be strictly increasing, there

may be several states at a given time. We refer to the subsequence of the execution up to,

but not including, the first operation #; for which t; > T, as the execution up to time T,

so that the state s;_; that ends this is the last state of the automaton at time T. Thus the

operations x; that occur in the execution up to time T are exactly those whose times t; are

less than or equal to T. In order to prove any bounds on the time the synchronizer algorithm

takes, we will need to assume that the component automata take steps promptly. Thus we

introduce the notion of a 1-admissible timed execution of an automaton 4. We say that a

timed execution of A is I-admissible? if whenever there is an output or internal operation

2This is a special case of a more general definition due to Tuttle.
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x, a state s and a time T, such that s = s; is a state of the automaton at time T and 7 is
enabled in state s, then there is some index j > i such that the operation 7 = m and t <
T+1. In particular, in a 1-admissible timed execution, any operation (other than an input)
enabled in a state at time T, occurs in the execution of the system up to time T+1.

Now, an output or internal operation is enabled for an automaton formed by composing
components and hiding operations, exactly when it is enabled for the unique component
automaton of which the operation is not an input operation. It follows that in applying the
definition of 1-admissible timed execution to the system DistSysS(G), we can consider the
states of the component automata separai:ely. For example, when we consider the link au-
tomaton LIy (p,q), we see that the definition implies that in a 1-admissible timed execution
of a distributed solution, any message sent is delivered within one unit of time. We also
remark that all the automata discussed in this paper have the property that once an output
or internal operation is enabled, it remains enabled until it occurs.

We first prove that the system DistSysS(G) begins by issuing GO(p,1) operations promptly.

Lemma 37 Let H be the greatest depth of a tree in the spanning forest for G. Then any
1-admissible timed ezecution of DistSysS(G) contains GO(p,1) for all p, in the ezecution up
to time 2H.

Proof: We prove that for any node p, the operations GO(p,1) and send(p,q)PULSE(p,1)
occur in the execution up to time 2k, where k is the depth of p in its cluster’s tree. This
statement clearly implies the truth of the lemma, and we will prove it by induction on k.

The basis case, when k=1, is when p=leader(C) for some cluster C. Notice that for
each cluster C, the operation CLUSTERGO(C,1) of LE(C) is enabled in the initial state
of the system, and so is enabled in a state at time 0. Therefore the operation occurs
by time 1. Examining the postconditions of CLUSTERGO(C,1), and the preconditions of
GO(p,1) and send(p,q)PULSE(p,1) for q € children(p), we see that each operation GO(p,1)
and send(p,q)PULSE(p,1) is enabled in the last state of the system at time 1, unless it has
occurred already in the execution up to time 1. In either case, we deduce that each operation
GO(p,1) and send(p,q)PULSE(p,1) occurs in the execution up to time 2.

Now we suppose the statement proved for all nodes of depth k-1, and prove it for a node

p of depth k, for some value k > 1. Since k # 1, p is not leader(C), so let p’=parent(p). Then
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p’ has depth k-1, the induction hypothesis shows that the execution up to time 2k-2 contains
send(p’,p)PULSE(p’,1). Therefore, considering the preconditions for rec(p’,p)PULSE(p’,1)
as an operation of LI(p’,p), rec(p’,p)PULSE(p’,1) is enabled in the last state of the system
at time 2k-2 unless rec(p’,p)PULSE(p’,1) has occurred in the execution to time 2k-2. In
any case, rec(p’,p)PULSE(p’,1) must occur in the execution up to time 2k-1. Examining the
postconditions of rec(p’,p)PULSE(p’,1) as an operation of ND(p), we see that the precon-
ditions of each of the operations GO(p,1) and send(p,q)PULSE(p,1) for q € children(p) are
satisfied in the last state at time 2k-1, unless the operation in question has already occurred
in the execution up to time 2k-1. In any case, each operation must occur in the execution
up to time 2k. This completes the inductive step of the proof of the statement, and thus
completes the proof of the lemma. Q.E.D.

Now we prove that the algorithm has good time performance, as claimed in [Aw].

Lemma 38 Let H be the greatest depth of a tree in the spanning forest for G. Suppose 1 18
a positive integer. Then any 1-admissible well-formed timed execution of DistSysS(G) that
contains OK(p,i) for every node p in the ezecution up to time T, contains GO(p,i+1) for

every node p in the ezecution up to time T+8H.

Proof: We first prove the statement that for any node p, whose height in its cluster’s tree
is k, the execution up to time T+2k-2 contains rec(p’,p)SAFE(p’,i) for all p’ € children(p).
This is proved by induction on the height k. The basis case, when k=1, is when p is a
leaf. This case is trivial as there are no elements of children(p). Therefore we assume that
k > 1, and that the statement has been proved for all nodes of height less than k. Fix
any p’ € children(p), so p’ has height at most k-1, and so by the induction hypothesis,
the execution up to time T+2k-4 contains rec(p”,p’)SAFE(p” i) for every p” € children(p’).
Examining the postconditions of the operations OK(p’,i) and rce(p™,p’)SAFE(p”,i), we see
that the last of these to occur causes (p’,p)SAFE(p’,i) to be placed in the outgoing message
buffer of ND(p’), and so (since all have occurred in the cxecution to time T+2k-4) the
operation send(p’,p)SAFE(p’,i) is enabled in the last state at time T+ 2k-4, unless it has
already occurred in the execution to time Tt 2k-4. In any case send(p’,p)SAFE(p’,i) must
occur in the execution to time T+2k-3. Considering the link automaton LI(p’,p), we see

that rec(p’,p)SAFE(p’,i) is enabled in the last state at time T+ 2k-3, unless it has already
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occurred, and so rec(p’,p)SAFE(p’,i) must occur in the execution to time T+2k-2. Since p’
was an arbitrary child of p, this establishes the truth of the statement.

Next we prove the statement that for any special node p, whose depth in its cluster’s
tree is k, the execution up to time T+2H+2k-2 contains send(p,q) CLUSTERSAFE(p,i) for
every q € specialchildren(p) U Preferred(p). This time we use induction on the depth k.
The basis case, when k=1, is when p=leader(C). Examining the preconditions of the CLUS-
TEROK(C,i) operation of the automaton LE(C), we deduce from the previous statement
(since p has height at most H in its tree) that CLUSTEROK(C,i) is enabled in the last state
at time T+2H-2, unless it has occurred earlier. In any case, CLUSTEROK(C,i) must oc-
cur in the execution to time T+2H-1. Examining the postconditions of CLUSTEROK(C,i),
we see that, for every q € speciaichildren(p) U Preferred(p), send(p,q)CLUSTERSAFE(p,i)
is enabled in the last state at time T+2H-1, unless it has occurred already. In any case,
send(p,q)CLUSTERSAFE(p,i) occurs in the execution up to time T+2H, proving the state-
ment for k=1. Assuming the result proved for nodes of depth less than k, we prove
the statement for a special node p of depth k > 1. Since parent(p) is special, and has
depth k-1, the induction hypothesis implies that the execution to time T+2H+2k-4 contains
send(parent(p),p) CLUSTERSAFE(parent(p),i). Thus the execution up to time T+2H+2k-
3 contains rec(parent(p),p) CLUSTERSAFE(parent(p),i). Examining the postconditions of
this operation of ND(p), we see that each operation send(p,q) CLUSTERSAFE(p,i) for q €
specialchildren(p) U Preferred(p) is enabled in the last state at time T+2H+2k-3, unless it
has already occurred. In any case each of these operations must occur in the execution to
time T+2H+2k-2, cempleting the proof of this statement.

Next we prove the statement that for every special node p, whose height in its cluster’s
tree is k, the execution up to time T+4H+2k-3 contains rec(p’,p)READY(p’,i) for all p’ €
specialchildren(p). The basis case, when k=1, is trivial, as then p is a leaf of the tree and has
no children at all. Therefore, we assume that k > 1, and that the statement has been proved
for all special nodes of height less than k. Fix any p’ € specialchildren(p), so p’ has height
at most k-1. Examining the postconditions of all the operations rec(q,p’)READY(q,i) for q
€ specialchildren(p’), and rec(q’,p’)CLUSTERSAFE(q’,i) for g’ € Preferred(p’), we see that

the last of these to occur causes (p’,p)READY(p’,i) to be placed in the outgoing message

51

.........

AL .

' g% . ats a%¢ 28 a*l.a’

Ul

- -

[

- .’_‘&

By

T

£ 2

oo o 70 T I B P 5 B M)

L T

1
.

P o

L)
P W LT



; N o gat Aa" o200 0" 0ab Nak daf fo0 Saf a0 tgd O0h W
TR RN AT AN AN AN TR TR R T U S O PR R KW T W T AT AR AL A RO AN 3oletels?,

buffer of ND(p’). However each of rec(q,p’)READY(q,i) occurs in the execution up to
time T+4H+2k-5, by the induction hypothesis, and each of rec(q’,p’)CLUSTERSAFE(q’,i)

PN

occurs in the execution up to time T+4H-1 since send(q’,p’) CLUSTERSAFE(q’,i) occurs in
the execution up to time T+4H-2 (by the previous statement). Since p is special, the set of:

events rec(q,p’)READY(q,i) for q € specialchildren(p’) and rec(q’,p’)CLUSTERSAFE(q’,i)

Saol W T

. for q’ € Preferred(p’), is not empty, and so send(p’,p)READY(p’,i) is enabled in the state at
time T+4H+2k-5 unless it occurred already. In any case, send(p’,p)READY(p’,i) occurs in.

the execution up to time T+4H+2k-4, and so rec(p’,p)READY(p’,i) occurs in the execution
up to time T+4H42k-3.

- - -

Finally we observe that we can prove by induction on the depth, that for any node p,
whose depth in its cluster’s tree is k, and any q € children(p), the operations GO(p,i+1),
and send(p,q)PULSE(p,i+1) occur in the execution up to time T+6H+2k-3. This statement
N clearly implies the truth of the lemma. The basis case, when k=1, is when p=leader(C) for
: some cluster C. Since the schedule we are considering is well formed, it contains GO(p’,i)
) for every p’ € G, and therefore (considering the preconditions for GO(p,i)), also contains

CLUSTERGO(C,i). Thus the operation CLUSTERGO(C,i+1) of LE(C) is enabled in the
‘ last state at time T+6H-3, unless it has occurred already, since the execution up to time
: T+6H-3 contains rec(p’,p)READY(p’,i) for all p’ € specialchildren(p), by the previous state-
ment, and the execution up to time T+4H-1 contains rec(q’,p)CLUSTERSAFE(q’,i) for all
q’ € Preferred(p), because send(q’,p) CLUSTERSAFE(q’,i) occurred by time T+4H-2. We
can deduce that CLUSTERGO(C,i+1) occurs in the execution up to time T+6H-2. Exam-
ining the postconditions of whichever occurs last of the operations CLUSTERGO(C,i+1),
OK(p,i) and rec(p’,p)SAFE(p’,i) for p’ € children(p), we see that each of the operations

GO(p,i-+1) and send(p,q)PULSE(p,i+1) is enabled in the last state of the system at time
T+6H-2, unless it has occurred already. Therefore each occurs in the execution up to time
T+6H-1. The case where k > 1 is straightforward, since then parent(p) has depth k-1, and
‘ so the induction hypothesis says that send(parent(p),p)PULSE(parent(p),i+1) occurs in the
execution up to time T+6H+2k-5, and thus rec(parent(p),p)PULSE(parent(p),i+1) occurs
by time T+6H+2k-4. The postconditions of this operation show that each of GO(p,i+1)
and send(p,q)PULSE(p,i+1) is enabled in the last state at time T+6H{+2k-4, unless it has
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occurred earlier, and so each occurs by time T+6H+2k-3, as required. Q.E.D.
Even without assuming that the system performs actions within time 1, as we did above,
we can show that the system satisfies a liveness condition, as long as each output or inter-

nal operation is performed eventually, once it is enabled. Thus we say that an execution

$0,M1,81,%92,... is admissible if for every i and every operation = that is enabled in state s;,
there is an index j with j > i such that = The following lemmas have proofs that are
almost identical to those of the two previous lemmas concerning timed executions, except
that references to specific times are deleted, and instead operations are deduced to occur

‘eventually’.

Lemma 39 Any admissible ezecution of DistSysS(G) contains GO(p,1) for all p.

Lemima 40 Suppose 1 is a positive integer. Any admissible well-formed ezecution of Dist-

SysS(G) that contains OK(p,i) for every node p, contains GO(p,i+1) for every node p.

7 Summary and Further Directions

In this paper we have offered a formal, rigorous proof of the correctness of Awerbuch’s al-
gorithm for network synchronization. We specified both the algorithm and the correctness
condition using the I/O automaton model. Our proof of correctness followed closely the
intuitive arguments made by the designer of the algorithm by exploiting the model’s natural
| support for such important design techniques as stepwise refinement and modularity. In
' particular, since the algorithm uses simpler algorithms for synchronization within and be-
tween ‘clusters’ of nodes, our proof could have imported as lemmas the correctness of these
simpler algorithms, if these had been proved before. Alternatively, the understanding of the
modularity that the proof gives us would allow us to see how to safely change the choices
of implementation of the separate parts of the synchronizer, independently of one another.
Also, we clearly benefit from having carried out the correctness proof in the [/O automaton
model which supports modularity, since the network synchronizer is often used as an ‘off-
the-shelf building block’ component in a larger system, and proofs of the correctness of the

system will be able to use our proof without change.
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In the future, we hope to study other network protocols in the same way. We still need NS
to understand how to use the model to capture the intuition behind other, less clear-cut, )
forms of ‘modularity’. For example many network algorithms operate over spanning forests :::!
that change with time, and so seem to be hard to represent as intermediate specifications
implemented by collections of automata. Nonetheless, we expect that the I/O automaton
model will provide support for verifying many protocols, once we understand the precise

nature of the modularity.
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Appendix I: The Detailed Code for the Synchronization Al-

gorithm

We give the code for each automaton ND(p) for a non-leader node p, and also for each

K automaton LE(C) for the leader node of cluster C. Afterwards, we discuss the code for two

2 operations, to give the interested reader some feeling for the model. We also discuss the way

our algorithm is developed from the code in [Aw], which is written for an interrupt-driven

model.

Non-leader node: ND(p)

Inputs:
. rec(q,p)READY(q,i) for q € children(p), i positive
! rec(q,p)CLUSTERSAFE(q,i) for q € Preferred(p) or q = parent(p), i positive

o - -

OK(p,i) for i positive

rec(q,p)SAFE(q,i) for q € children(p), i positive

" rec(q,p)PULSE(q,i) for q = parent(p), i positive

A Outputs:

i send(p,q)READY(p,i) for q = parent(p), i positive ]
send(p,q)CLUSTERSAFE(p,i) for q € children(p) U Preferred(p), i positive

GO(p,i), for i positive

DL R A A A - - \ ,‘ N - LRRCIVIT
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send(p,q)SAFE(p,i) for q = parent(p), i positive

send(p,q)PULSE(p,i) for q € children(p), i positive

state:

3 array CLUSTERSAFErec[q,i, initially all false :
R array READYrec[q,i], initially all false :
’ array OKrec[i], initially all false
: array GOsent[i], initially all false ::
: array SAFErec|q,i], initially all false N
: array pulse[i], initially all false ;
) 8

multiset mess, initially empty

¥ LI

transitions:

rec(q,p)READY(q,i)

Postconditions

s.READYrec[q,i] = true

if q € specialchildren(p) v
and (s’.READYrec|q’,i] = true for all g’ € (specialchildren(p)-{q}))
and (s”.CLUSTERSAFErec[q’,i] = true for all ¢’ € Preferred(p)) M

then s.mess = s’.mess U {(p,parent(p))READY (p,i)}

P T T

rec(q,p)CLUSTERSAFE(q,i) J

Postconditions

s.CLUSTERSAFErec[q,i] = true

: if g = parent(p)
;' then s.mess = &’.mess U {(p,p’)CLUSTERSAFE(p,i) : p’ € specialchildren(p) U Preferred(p)}
¢ if q € Preferred(p) ]

and (s’ READYrec[q’,i] = true for all ¢’ € specialchildren(p))
and (s”.CLUSTERSAFErec(q’,i] = true for all ¢’ € (Preferred(p)-{q})) N
then s.mess = s’.mess U {(p,parent(p))READY(p,i)}
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OK(p,i)

Postconditions
8.0Krec|i] = true
if (s’.SAFErec|q,i] = true for all q € children(p))
then s.mess = s’.mess U {(p,parent(p))SAFE(p,i)}

rec(q,p)SAFE(q,i)

Postconditions

s.SAFErec(q,i] = true
if (s’.SAFErec|q’,i] = true for all q’ € children(p)-{q}
and s8’.OKrecli] = true)
~ then s.mess = s’.mess U {(p,parent(p))SAFE(p,i)}

rec(q,p)PULSE(q;i)
Postconditions
s.pulseli] = true

s.mess = s’.mess U {(p,p’)PULSE(p,i) : p’ € children(p)}

send(p,q)READY(p,i)

Preconditions

(p,q)READY(p,i) € s’.mess

.'

Postconditions \
s.mess = s’.mess — {(p.q)READY(p,i)} : \
N

send(p,q) CLUSTERSAFE(p,i) M
)

Preconditions A
(p,q)CLUSTERSAFE(p,i) € s’.mess §~
Postconditions |
s.mess = s’.mess — {(j,q)CLUSTERSAFE(p,i)} :::'i

%

3
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GO(p,i)
Preconditions
s’.pulse(i] = true
i =1 or 8’.GOsent[i-1] = true
8’.GOsent[i] = false
Postconditions

8.GOsent[i] = true

send(p,q)SAFE(p,i)
Preconditions
(p,9)SAFE(p,i) € s’.mess

Postconditions

s.mess = s’.mess — {(p,q)SAFE(p,i)}

send(p,q)PULSE(p,i)
Preconditions
(p,q)PULSE(p,i) € s’.mess

Postconditions

s.mess = s’.mess — {(p,q)PULSE(p,i)}

Leader: LE(C)

Inputs:

rec(q,p)READY(q,i) for p = leader(C), q € children(p), i positive

rec(q,p) CLUSTERSAFE(q,i) for p = leader(C), q € preferred(p), i positive
OK(p,i) for p = leader(C), i positive

rec(q,p)SAFE(q,i) for p = leader(C), q € children(p), i positive

Outputs:
CLUSTERGO(C,i) for i positive
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send(p,q)CLUSTERSAFE(p,i) for p = leader(C), q € children(p) U preferred(p), i positive
GO(p,i), for p = leader(C), i positive

CLUSTEROK(C,i) for i positive

send(p,q)PULSE(p,i) for p = leader(C), q € children(p), i positive

state:

array READYrec[q,i], initially all false

array CLUSTERSAFErec[q,i], initially all false
array clustergoli], initially all false

array OKrec|[i], initially all false

array GOsent/i], initially all false

array SAFErec|q,i], initially all false

array clustersafeli], initially all false

array pulse[i], initially all false

array CLUSTEROKSent(i], initially all false

multiset mess, initially empty

transitions:
rec(q,p)READY(q,i)
Postconditions

s.READYrec[q,i] = true

rec(q,p)CLUSTERSAFE(q,i)
Postconditions

s.CLUSTERSAFErec|q,i] = true

OK(p,i)
Postconditions
s.OKrec[i] = true
if (s".SAFErec(q,i] = true for all q € children(p))
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then (s.clustersafe(i] = true

if (s’.SAFErec|q,i] = true for all q € children(p)
and s’.clustergo[i+1] = true)

then (s.mess = s’.mess U {(p,q)PULSE(p,i+1) : p € children(p)}
and s.pulse|i+1] = true))

rec(q,p)SAFE(q,i)
Postconditions
s.SAFErec[q,i] = true
if (s’.SAFErec[q’,i] = true for all ¢’ € children(p)-{q}
and s’.OKrecli] = true)
then s.clustersafe[i] = true
if (s’.SAFErec|q’,i] = true for all g’ € children(p)-{q}
and s’.OKrec[i] = true and 8’.clustergo[i+1] = true)

then (s.mess = s’.mess U {(p,q)PULSE(p,i+1) : p € children(p)}
and s.pulse[i+1] = true)

CLUSTERGO(C,i)

Preconditions

i =1or ((s"."READYrec[q,i-1] = true for all q € specialchildren(p))

and (s’.CLUSTERSAFErec|q,i-1] = true for all q € Preferred(p)))

i =1 or s’.clustergo[i-1] = truc
s’.clustergo(i] = false
Postconditions
s.clustergo[i] == true
if (i = 1 or s’.clustersafe[i-1] = true)
then (s.mess = s’.mess U {(p,p’)PULSE(p,i) : p’ € children(p)}

and s.pulse(il = true)

send(p,q)CLUSTERSAFE(p,i)
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Preconditions

(p,q) CLUSTERSAFE(p,i) € s’.mess ]

Postconditions 1

s.mess = s’.mess — {(p,q)CLUSTERSAFE(p,i)}

..
Ry Pl

‘ GO(pi) >
‘ Preconditions o

s’.pulsefi] = true

-

h an vy &
-

- 1 =1 or 8".GOsent[i-1] = true

s’.GOsent/i] = false

T !

2 g o

Postconditions
' s.GOsentli] = true ¢
‘.
o
W
N
CLUSTEROK(C,i) b
Preconditions i
M
‘ s’.clustersafe[i] = true ‘
i s’.CLUSTEROKsent[i] = false "
Postconditions »
¥at
s.CLUSTERTOKsent[i] = true W
| s.mess = s’.mess U {(p,q) CLUSTERSAFE(p,i) : q € (specialchildren(p) U Preferred(p))} N
s‘ N
‘ &
send(p,q)PULSE(p,i) o
Preconditions 3
(p,q)PULSE(p,i) € s’.mess X
: "‘
i Postconditions o
s.mess = s’.mess — {(p,q)PULSE(p,i)} ::‘;
[ .::
v
For each p and q for which (p,q) is an edge of G, we let LI(p,q) be a link automaton P,
from p to q, for the message set M described next: if (p,q) is a preferred edge, then M is o
L3
the set of messages CLUSTERSAFE(p,i) for positive i; if p = parent(q) then M is the set \
N
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of CLUSTERSAFE(p,i) and PULSE(p,i) for positive i; if p € children(q) then M is the set
of READY(p,i) and SAFE(p,i) for positive i; if (p,q) is neither a preferred edge nor a tree
edge then M is the empty set (so in this case the link automaton is the trivial automaton
with no operations!).

As an aid in understanding the code above, we consider the pre- and postconditions
for the operation rec(q,p)CLUSTERSAFE(q,i) of the non-leader node automaton ND(p).
This is an input operation, and so it has no preconditions, since it can occur at any time,
When it occurs, the fact that it has happened is recorded in the state by setting the value of
CLUSTERSAFErec|q,i] to true. The other effects depend on whether this is a message being
broadcast over p’s own cluster (this is the case if q is p’s parent) or whether this is a message

from a neighboring cluster (when q is a neighbor of p over a preferred edge). In the first

case, a CLUSTERSAFE(p,i) message to p’ is added to the multiset of outgoing messages, for
each p’ among p’s children and also for each p’ that is a neighbor along a preferred edge. In
the second case, the node checks to see whether all the conditions are now satisfied, in order
to play its part in the convergecast of READY messages. The convergecast can occur if a
READY/(q’,i) message has been received from every special child q’ (as recorded in the state
of the READYrec[q’,i] variables) and if a CLUSTERSAFE(q’,i) message has been received
from every neighbor q’ along a preferred edge (except, of course, for q itself). If all of these
have been received, the node places a READY(p,i) message for its parent, in its buffer of
outgoing messages.

As another example, consider the operation GO(p,i) for a non-leader node p. This can
occur provided the PULSE(q,i) message has arrived from p’s parent (a fact reflected by the
variable pulse(i] being true) and if the previous GO operation (if any) has already occurred,
and if the GO(p,i) itself has not occurred (this is necessary as the other conditions once true,
remain true forever). The fact that the operation has occurred is reflected in the state by

setting GOsent|i] to true.

The Relationship to Awerbuch’s Original Algorithm

We have given the detailed algorithm for network synchronization by using I/O automata,

where a node changes state after receiving a message, and a message can be sent (and the
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node’s state can change accordingly) whenever the send(p,q)M operation is enabled. In his
account, Awerbuch used the interrupt-driven model that is more common among designers of
network algorithms, where the effects of a message receipt include (atomically) both changes
in the state of the node involved and the sending of messages from that node, but where
messages are not generated spontaneously. As the reader can see, we have expressed the
interrupt-driven code ‘on receipt of M from q: change the value of variable v from v-old to v-
new = f(v-old), and send M; to q;, Mg to qo, etc.” by an input operation rec(q,p)M with no
precondition, and postcondition s.v = f(s’.v), s.mess = s’.mess U {(p,q1)My,(p,a2)M32,...}.
Also we have, for example, an output operation send(p,q1)M; with precondition (p,q;)My
€ s’.mess and postcondition s.mess = s’.mess — (p,q1)M1. Thus our model does not send
out messages atomically on receipt of a trigger message, but rather places them in a multiset
of outgoing messages, and sends them at some later time. We note that this difference is not
important for the correctness of the algorithm. After all, even in the interrupt-driven model,
the time of message receipt is delayed arbitrarily, and so additional uncertainty, about the
delay before the message is sent, does not cause trouble.

Some other differences between our presentation of the algorithm and the original version
in [Aw] should be mentioned. The first is that we have ‘hard-wired’ the distinction between
the leader of a cluster and other nodes, while Awerbuch gives a uniform algorithm for every
node that branches, depending on whether or not the node is a leader. Also Awerbuch uses
several subroutines that are called from different places, whereas we have inciuded these
‘in-line’ at every occurrence. Another minor difference is that the events that we call CLUS-
TERGO(C,i) and CLUSTEROK(C.,i), and treat as operations of the leader of cluster C, are
regarded by Awerbuch as the leader sending itself a message (PULSE and CLUSTERSAFE,
respectively). None of these differences is at all significant for the correctness or performance
of the algorithm.

There is one respect, however, in which our algorithm is significantly altered from the
one given by Awerbuch. In that version, each node delayed sending the READY message
to its parent until it had received the CLUSTERSAFE message for its own cluster, as well
as the CLUSTERSAFE message for every neighboring cluster along a preferred edge and
the READY message from every child. In contrast, we allow the READY messages to be
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sent without waiting for the cluster itself to be safe. Instead we check only at the leader,
before commencing the broadcast of PULSE messages. We therefore use only the subtree
containing special nodes, rather than the whole tree, for the convergecast. Similarly, the
CLUSTERSAFE messages are broadcast only over the subtree of special nodes. This alter-
ation does not affect correctness, and may improve running time by allowing the convergecast
of READY messages to overlap the broadcast of CLUSTERSAFE messages. It may also
reduce the number of messages sent. The change also makes the verification simpler, as it

increases the degree of independence between the inter- and intracluster synchronization.

Appendix II: Detailed Code for the Divided Algorithm
Non-leader node: NDCS(p)

Inputs:

rec(q,p)READY(q,i) for q € children(p), i positive
rec(q,p)CLUSTERSAFE(q,i) for q € Preferred(p) or q = parent(p), i positive
Outputs:

send(p,q)READY(p,i) for q = parent(p), i positive
send(p,q)CLUSTERSAFE(p,i) for q € children(p) U Preferred(p), i positive

state:
array CLUSTERSAFErec|q,i], initially all false
array READYrec|q,i], initially all false

multiset mess, initially empty

transitions:
rec(q,p)READY(q,i)
Postconditions
s.READYrec[q,i] = true
if q € specialchildren(p)
and (s”.READYrec|q',i] = true for all q’ € (specialchildren(p)-{q}))
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and (s’.CLUSTERSAFErec(q’,i] = true for all g’ € Preferred(p))
then s.mess = s’.mess U {(p,parent(p))READY(p,i)}

rec(q,p) CLUSTERSAFE(q,1)

Postconditions

s.CLUSTERSAFErec|q,i] = true

if ¢ = parent(p)

then s.mess = s’.mess U {(p,p’)CLUSTERSAFE(p,i) : p’ € specialchildren(p) U Preferred(p)}

if q € Preferred(p)
and (s’.READYrec(q’,i] = true for all q’ € specialchildren(p))

and (s’.CLUSTERSAFErec|q’,i] = true for all q’ € (Preferred(p)-{q}))

then s.mess = s’.mess U {(p,parent(p))READY(p,i)}

send(p,q)READY(p,i)

Preconditions

(p,q)READY(p,i) € s’.mess

Postconditions

s.mess = s’.mess ~ {(p,q)READY(p,i)}

send(p,q)CLUSTERSAFE(p,i)

Preconditions

(p,q)CLUSTERSAFE(p,i) € s’.mess

Postconditions

s.mess = s’.mess ~ {(p,q)CLUSTERSAFE(p,i)}

Leader: LECS(C)

Inputs:
CLUSTEROK(C,i) for i positive
rec(q,p)READY(q,i) for p = leader(C), q € children(p), i positive
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rec(q,p) CLUSTERSAFE(q,i) for p = leader(C), q € preferred(p), i positive

Outputs:

CLUSTERGO(C,i) for i positive

send(p,q)CLUSTERSAFE(p,i) for p = leader(C), q € children(p) U preferred(p), i positive

state:

array READYrec|q,i], initially all false

array CLUSTERSAFErec|q,i], initially all false
array CLUSTERGOsent(i], initially all false

multiset mess, initially empty

transitions:
rec(q,p)READY(q,i)
Postconditions

s.READYrec[q,i] = true

rec(q,p) CLUSTERSAFE(q,i)
Postconditions

s.CLUSTERSAFErec|q,i] = true

CLUSTEROK(C,i)

Postconditions

s.mess = s’.mess U {(p,q)CLUSTERSAFE(p,i) : q € {specialchildren(p) U Preferred(p))}
CLUSTERGO(C,i)

Preconditions
i = 1 or ((s’.READYrec|q,i-1] = true for all q € specialchildren(p))
and (s’.CLUSTERSAFErec|q,i-1] = true for all q € Preferred(p)))
i =1 or 8>.CLUSTERGOsent[i-1] = true
8’.CLUSTERGOsent[i] = false

Postconditions
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W s.CLUSTERGOsent[i] = true

!

;‘“i
v","l
J’,:- send(p,q) CLUSTERSAFE(p,i)
i

Preconditions

R
“:::' (p,q)CLUSTERSAFE(p,i) € s’.mess

\
, Postconditions
e ' s.mess = s’.mess — {(p,q)CLUSTERSAFE(p,i)}
¥ 'i‘
R
‘:. Tree Link: LICS(p,q)
W
‘:;' If q € children(p), this is a link automaton from p to q for the messages CLUSTERSAFE(p,i).
e If q = parent(p), this is a link automaton from p to q for the messages READY(p,i). If (p,q) is
0
'::5" a preferred edge, this is a link automaton from p to q for the messages CLUSTERSAFE(p,i).

U
:::p Otherwise, this is a link automaton for no messages.
hXK

o Non-leader node: NDSL(p)
;; §
y Inputs:
;:c.:‘ OK(p,i) for i positive
L
b rec(q,p)SAFE(q,i) for q € children(p), i positive
‘:‘ ] rec(q,p)PULSE(q,i) for q = parent(p), i positive
:“::. Outputs:
' : GO(p,i), for i positive
> send(p,q)SAFE(p,i) for q = parent(p), i positive
¥
2 send(p,q)PULSE(p,i) for q € children(p), i positive
a4y
Sy
K state:

¥ array OKrecli], initially all false
W
;“‘. array GOsent|i], initially all false
array SAFErec(q,i], initially all false

array pulse(i], initially all false

L]
:::' multiset mess, initially empty
,;:T
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transitions:

OK(p.i)

Postconditions
s.OKrec[i] = true
if (s’.SAFErec(q,i] = true for all q € children(p))
then s.mess = s’.mess U {(p,parent(p))SAFE(p,i)}

rec(q,p)SAFE(q,i)

Postconditions
8.SAFErec(q,i] = true
if (s’.SAFErec|q’,i] = true for all q’ € children(p)-{q}
and 8’.OKrec[i] = true)
then s.mess = s’.mess U {{p,parent(p))SAFE(p,i)}

rec(q,p) PULSE(q,i)
Postconditions

s.pulse[i] = true

s.mess = s’.mess U {(p,p’)PULSE(p,i) : p’ € children(p)}

GO(p,i)
Preconditions
8’.pulse|i] = true
i = 1 or 8>.GOsent[i-1] = true
8’.GOsent(i] = false
Postconditions

8.GOsent[i] = true

send(p,q)SAFE(p,i)

Preconditions
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transitions:
OK(p,i)
Postconditions
8.0Krec[i] = true
if (s’ SAFErec|q,i] = true for all q € children(p))
then (s.clustersafe[i] = true
if (s’.SAFErecq,i] = true for all q € children(p)
: and s’.CLUSTERGOrec[i+1] = true)

e L

; then (s.mess = s’.mess U {{p,q)PULSE(p,i+1): p € children(p)}
and s.pulsefi+1] = true))

)

i rec(q,p)SAFE(q,i)

: Fostconditions

-' s.SAFErec|q,i] = true

B if (s’.SAFErec|q’,i] = true for all ¢’ € children(p)-{q}

and 8’.OKrec[i] = true)
then s.clustersafe[i] = true
if (s’.SAFErec(q’,i] = true for all g’ € children(p)-{q}
‘; and 8’.OKrec[i] = true and s'.CLUSTERGOrec[i+1] = true)

then (s.mess = ¢’.mess U {(p,q)PULSE(p,i+1): p € children(p)}
and s.pulsefi+1] = true)

CLUSTERGO(C,i)
Postconditions
8.CLUSTERGOrec|i] = true
if (i = 1 or 8’.clustersafe(i-1] = true)
then (s.mess = s’.mess U {(p,p’)PULSE(p,i) : p’ € children(p)}

and s.pulse(i] = true)
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(p,q)SAFE(p,i) € s’.mess

Postconditicns

s.mess = s’.mess — {(p,q)SAFE(p,i)}

A

send(p,q) PULSE(p,i)
Preconditions

(p’Q)PULSE(p)l) € s’.mess

I

. Postconditions

s.mess = s’.mess — {(p,q)PULSE(p,i)}

-8 PR YR T AT Gl T e

. Leader: LESL(C)

f' Inputs:

i OK(p,i) for p = leader(C), i positive 3
CLUSTERGO(C,i) for i a number .

: rec(q,p)SAFE(q,i) for p = leader(C), q € children(p), i positive :

. Outputs:

GO(p,i), for p = leader(C), i positive
K CLUSTEROK(C,i) for i positive
-
3 send(p,q)PULSE(p,i) for p = leader(C), q € children(p), i positive
)
)

- 2 % B

state:

array OKrec|i], initially all false

array GOsent/[i], initially all false

array SAFErec|q,i], initially all false
array CLUSTERG Orecli, initially all false ¥

P PO

array clustersafe(i], initially all false

- -

array pulseli], initially all false X

array CLUSTEROKSent[i], initially all false

multiset mess, initially empty

X
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: GO(p;) |

’ Preconditions ‘

s’.pulse[i] = true i
i = 1 or 8’.GOsenti-1] = true

:; s’.GOsent[i] = false ‘:

”}t Postconditions z

N s.GOsent[i] = true

3 .

£ CLUSTEROK(C,i)

,:: Preconditions

i" s’.clustersafe[i] = true

i s’.CLUSTEROKsent[i] = false ':

::' Postconditions ,

& s.CLUSTERTOKsent[i] = true ’

;‘c

:‘.E send(p,q)PULSE(p,i) ‘

::l Preconditions )

g (p,a)PULSE(p,i) € 8’.mess H

:‘ Postconditions E

'i; s.mess = s’.mess — {(p,q)PULSE(p,i)} "

iy

¥

:Q. Tree Link: LISL(p,q)

-'_:' If q € children(p), this is a link automaton from p to q for the messages PULSE(p,i). If q

.::.: = parent(p), this is a link automaton from p to q for the messages SAFE(p,i). Otherwise, .

r this is a link automaton for no messages. :

;

:
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